Инд. авторы: Nepop R.K., Agatova A.R.
Заглавие: RECURRENCE INTERVAL OF STRONG EARTHQUAKES IN THE SE ALTAI, RUSSIA REVEALED BY TREE-RING ANALYSIS AND RADIOCARBON DATING
Библ. ссылка: Nepop R.K., Agatova A.R. RECURRENCE INTERVAL OF STRONG EARTHQUAKES IN THE SE ALTAI, RUSSIA REVEALED BY TREE-RING ANALYSIS AND RADIOCARBON DATING // GEOCHRONOMETRIA. - 2018. - Vol.45. - Iss. 1. - P.20-33. - ISSN 1897-1695.
Внешние системы: DOI: 10.1515/geochr-2015-0083; РИНЦ: 35482004; SCOPUS: 2-s2.0-85041574343; WoS: 000423450700003;
Реферат: eng: This paper presents the results of paleoseismogeological investigations including tree-ring analysis and radiocarbon dating in pleistoseist zone of the 2003 Chuya earthquake, SE Altai, Russia. Twenty-five radiocarbon dates of previously unknown evidences of prehistoric earthquakes along the fault bounders of the Chagan-Uzun massif, North Chuya and South Chuya ranges are reported. Perspectives of applying dendroseismological approach within the high mountainous seismically active southeastern part of Russian Altai are demonstrated. In addition to estimating the germination ages of trees growing on the bare surfaces of seismically triggered landslides, analysis of wood penetrating injuries in the individual tree ring series was applied for dating paleorock-falls. Analysis of distribution patterns of tree-ring anomalies and injured trees suggests a criterion of recognizing seismic origin of past rock-falls. Dendrochronologically obtained dates of abrupt intensifications of rock-falls can be considered as supposed dates of past earthquakes, which should be verified by alternative proxy data. Obtained results argue for the high regional seismicity in the second half of the Holocene. Strong earthquakes occurred here AD 1532, and 600-700, 1300-1500, 2400-2700, 3400-3700, 3800-4200 cal BP. This data clarifies the chronology of seismic events within the SE Altai. The specified recurrence interval of strong earthquakes is about 400 years during the last 4000 years.
Ключевые слова: HOLOCENE; DYNAMICS; SEDIMENTS; PALEOSEISMOLOGY; SOUTHEASTERN ALTAI; Holocene; recurrence interval of strong earthquakes; paleoseismicity; tree-ring analysis; radiocarbon dating; SE Altai; FAULT;
Издано: 2018
Физ. характеристика: с.20-33
Цитирование: 1. Agatova AR, Nepop RK and Vysotsky EM, 2006. Seismogravi-tacionnye paleodislokacii v doline reki Chagan (Yugo-Vostochnyj Altai, Rossija) (Seismogravitational paleodeformations in Chagan river valley (SE Altai, Russia)). Geomorfologiya 4: 53–62 (in Russian). 2. Agatova AR, Nepop RK, Slyusarenko IYu, Myglan VS, Nazarov AN and Barinov VV, 2014a. Glacier dynamics, palaeohydrological changes and seismicity in southeastern Altai (Russia) and their influence on human occupation during the last 3000 years. Quaternary International 324: 6–19, DOI 10.1016/j.quaint.2013.07.018. 3. Agatova AR, Nepop RK, Barinov VV, Nazarov AN and Myglan VS, 2014b. The first dating of strong Holocene earthquakes in Gorny Altai using long-term tree-ring chronologies. Russian Geology and Geophysics 55: 1059–1067, DOI 10.1016/j.rgg.2014.08.002. 4. Barinov VV, Myglan VS, Nazarov AN, Vaganov EA, Agatova AR and Nepop RK, 2016. Extreme climatic events in the Altai Republic according to dendrochronological data. Biology Bulletin 43(2): 152–161, DOI 10.1134/S1062359016020023. 5. Bekker MF, 2004. Spatial variation in the response of tree rings to normal faulting during the Hebgen Lake Earthquake, Southwestern Montana, USA. Dendrochronologia 22: 53–59. 6. Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337–360. 7. Burbank DW and Anderson RS, 2001. Tectonic Geomorphology. Oxford, UK, Blackwell Publishing: 274pp. 8. Butvilovsky VV, 1993. Paleogeografiya poslednego oledenenija i golocena Altaja: Sobytijno-Katastroficheskaja model’ (Paleogeog-raphy of the Last Glaciation and the Holocene of Altai: a Catastrophic Events Model). Tomsk, Tomsk University Press: 253pp (in Russian). 9. Cook ER and Krusic PJ, 2008. A tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN). http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html. 10. Deev EV, Zolnikov ID and Gus’kov SA, 2009. Seismites in Quaternary sediments of southeastern Altai. Russian Geology and Geophysics 50(6): 546–561, DOI 10.1016/j.rgg.2008.10.004. 11. Devyatkin EV, 1965. Kajnozojskie otlozhenija i neotektonika Yugovostochnogo Altaja (Cenozoic deposits and neotectonics of Southeastern Altai). Moscow, USSR Academy of Science: 244pp (in Russian). 12. Emanov AA, Leskova VE, Emanov AF and Fateev AV, 2009. Elements of the structure and phase of development of the Chuya earthquake aftershock. Fizicheskaya Mezomekhanika 12(1): 29–36. 13. Friedman JM, Vincent KR and Shafroth PB, 2005. Dating floodplain sediments using tree-ring response to burial. Earth Surface Processes and Landforms 30: 1077–1091, DOI 10.1002/esp.1263. 14. Fritts HC, 1976. Tree-Rings and Climate, Academic, San Diego, Calif. 567pp. 15. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 44: 69–75. 16. Hupp CR, Osterkamp WR and Thornton JL, 1987. Dendrogeomorphic Evidence and Dating of Recent Debris Flows on Mount Shasta, Northern California. US Geological Survey Professional Paper 1396-B. 17. Jacoby GC, 1997. Application of tree-ring analysis to paleoseismology. Reviews of Geophysics 35: 109–124, DOI 10.1029/96RG03526. 18. Keefer DK, 2002. Investigating landslides caused by earthquakes – a historical review. Surveys in Geophysics 23: 473–510, DOI 10.1023/A:1021274710840. 19. Kirnos DP, Kharin DA and Shebalin NV, 1961. History of instrumental seismology in the USSR, in: Vvedenskaya NA and Kondorskaya NV (Eds.), Earthquakes in the USSR. Moscow, USSR Academy of Science: 9–66 (in Russian). 20. Lundström T, Jonsson MJ, Volkwein A and Stoffel M, 2009. Reactions and energy absorption of trees subject to rockfall: A detailed assessment using a new experimental method. Tree Physiology 29: 345–359, DOI 10.1093/treephys/tpn030. 21. McAuliffe JR, Scuderi LA and McFadden LD, 2006. Tree-ring record of hillslope erosion and valley floor dynamics: Landscape responses to climate variation during the last 400 yr in the Colorado Plateau, Northeastern Arizona. Global and Planetary Change 50: 184–201, DOI 10.1016/j.gloplacha.2005.12.003. 22. McCalpin JP, 2009. Ed. Paleoseismology. Vol. 95. Academic press. 23. Myglan VS, Ovchinnikov DV, Vaganov EA, Bykov NI, Gerasimova OV, Sidorova OV and Silkin PP, 2009. Postroenie 1772-letnei drevesno-kol’cevoj hronologii dlja territorii respubliki Altai (Construction of 1772-year tree ring width chronology for Altay Republic). Izvestiya RAN. Seriya Geograficheskaya 6: 70–77 (in Russian). 24. Nazarov AN and Myglan VS, 2012. The Possibility of construction of the 6000-year chronology for Siberian Pine in the Central Altai. Journal of Siberian Federal University. Biology 5(1): 70–88. 25. Narozny YuK and Osipov AV, 1999. Oroklimaticheskie usloviya oledeneniya Central’nogo Altja (Oroclimatic conditions of the Central Altai glaciations). Izvestija Russkogo Geograficheskogo Obschestva 131(3): 49–57 (in Russian). 26. Nepop RK and Agatova AR, 2008. Estimating magnitudes of prehistoric earthquakes from landslide data: first experience in southeastern Altai. Russian Geology and Geophysics 49(2): 144–151, DOI 10.1016/j.rgg.2007.06.013. 27. Ovchinnikov DV, Panyushkina IP and Adamenko MF, 2002. Thousand-year tree-ring chronology of Larch in Gorny Altai and its use for the reconstruction of summer temperatures. Geography and natural resources 1: 102–108 (in Russian). 28. Okishev PA, 1982. Dinamika oledenenija Altaja v pozdnem Pleistocene i golocene (The Dynamics of Glaciation in Altai during the Late Pleistocene and Holocene). Tomsk, Tomsk University Press: 210pp (in Russian). 29. Novikov IS, 2004. Morfotektonika Altaja (Morphotectonics of Altai). Novosibirsk, SB RAS Publisher: 313pp (in Russian). 30. Page RA, 1970. Dating episodes of faulting from tree rings - Effects of the 1958 rupture of the Fairweather fault on tree growth. Geological Society of America Bulletin 81: 3085–3094. 31. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM and Van Der Plicht J, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 1869–1887. 32. Reisner GI and Ioganson LI, 1996. Ocenka seismicheskogo potenciala Altaja s primeneniem vneregional’nogo seismotektonicheskogo metoda (Estimating the seismic potential of Altai using a universal seismotectonic method). Bull., Federal System for Seismology and Earthquake Prediction, Moscow, OIFZ RAN Publisher, 3(1/2): 90–95 (in Russian). 33. Rinn F, 1996. TSAP V. 3.6 Reference Manual: Computer Program for Tree-Rings Analysis and Presentation, Heidelberg: Frank Rinn Distrib. 34. Rogozhin EA and Platonova SG, 2002. Ochagovaye zony sil’nyh zemletrjasenij Gornogo Altaja v Golocene (Strong earthquake source zones of Gorny Altai in the Holocene). Moscow, UIPE RAS: 130pp (in Russian). 35. Rogozhin EA, Ovsyuchenko AN, Marahanov AV and Ushanova EA, 2007. Tectonic setting and geological manifestations of the 2003 Altai earthquake. Geotectonics 47(2): 87–104, DOI 10.1134/S001685210702001X. 36. Rogozhin EA, Ovsyuchenko AN and Marahanov AV, 2008. Major earthquakes of the southern Gorny Altai in the Holocene. Izvestiya. Physics Solid Earth 44(6): 469–486. 37. Rogozhin EA, Sheng Zhung and Rodina SN, 2012. Sopostavlenie sejsmotektonicheskih osobennostej Gornogo i Mongol’skogo Altaja (Correlation of seismotectonic features of the Gorny and Mongolian Altay). Issues of Engineering Seismology 39(3): 5–20 (in Russian). 38. Rogozhin EA, Lar’kov AS, Demberel S and Battulga B, 2013. Recurrence of strong earthquakes in the active Hovd fault zone, Mongolian Altay. Geotectonics 47(5): 340–350, DOI 10.1134/S0016852113050051. 39. Ruzhich VV, San’kov VA and Dneprovskii YI, 1982. The dendrochronological dating of seismogenic ruptures in the Stanovoi Highland. Soviet Geology and Geophysics. English Translation 23(8): 57–63. 40. Sheppard PR and Jacoby GC, 1989. Application of tree ring analysis to paleoseismology - 2 case studies. Geology 17: 226–229, DOI 10.1130/0091-7613(1989)017<0226:AOTRAT>2.3.CO;2. 41. Shiyatov SG, Vaganov EA, Kirdjanov AV, Kruglov VB, Mazepa VS, Naurzbaev MM and Khantemirov RM, 2000. Metody Dendro-chronologii. Chast’ I (Methods of dendrochronology. Part I). Krasnojarsk, Krasnojarsk University press: 80pp (in Russian). 42. Shumo Ge, Mexiang Bo, Fuwan Zheng and Fuzhong Luo, 1996. The Koktogay_Ertay Fault, Xinjiang, China. Journal of earthquake prediction research 5(4): 470–506. 43. Solonenko VP, 1973. Zemletrjasenija i rel’ef (Earthquakes and relief). Geomorfologiya, 4: 3–13 (in Russian). 44. Stoffel M and Bollschweiler M, 2008. Tree-ring analysis in natural hazards research - an overview. Natural hazards and Earth system Sciences 8: 187–202, DOI 10.5194/nhess-8-187-2008. 45. Stoffel M and Corona C, 2014. Dendroecological Dating of Geomorphic Disturbance in Trees. Tree-Ring Research 70(1): 3–20, DOI 10.3959/1536-1098-70.1.3. 46. Strunk H, 1997. Dating of geomorphological processes using dendroge-omorphological methods. Catena 31: 137–151, DOI 10.1016/S0341-8162(97)00031-3. 47. Tainik AV, Myglan VS, Barinov VV, Nazarov AN, Agatova AR and Nepop RK, 2015. The growth of Siberian larch (Larix sibirica Ldb.) at the upper forest boundary in the Altai Republic, Izvestiya RAN. Seriya Geograficheskaya 6: 75–85. 48. Trappmann D and Stoffel M, 2013. Counting scars on tree stems to assess rockfall hazards: A low effort approach, but how reliable? Geomorphology 180–181: 180–186, DOI 10.1016/j.geomorph.2012.10.009. 49. Wagner GA, 1998. Age Determination of Young Rocks and Artifacts. Berlin Heidelberg, Springer: 466pp. 50. Zhalkovsky ND and Muchnaya VI, 1975. Raspredelenie zemletrjasenij po energii I seismicheskaja aktivnost’ Altae-Sajanskoj oblasti (Energy distribution of earthquakes and seismic activity in the Altai-Sayan area). In: Chernov GA, ed., Seismicity of the Altai-Sayan area. Novosibirsk, Nauka, 5–15pp. (in Russian). 51. Zhalkovsky ND and Muchnaya VI, 1978. Katalog sil’nyh zemletrjasenij Altae-Sajanskogo regiona (K ≥ 12; M ≥ 4.5) (Catalog of large earthquakes in the Altai-Sayan area (K ≥ 12; M ≥ 4.5)). In: Solonenko VP and Nikolaev VA, eds., Seismogeology of the Eastern Altai-Sayan Mountain Province. Novosibirsk, Nauka, 15–27pp. (in Russian). 52. Zhalkovsky ND, Kuchai OA and Muchnaya VI, 1995. Seismichnost’ i nekotorye harakteristiki naprjazhennogo sostojanija zemnoj kory Altae-Sajanskoj oblasti (Seismicity and some characteristics of the stress state of the Earth’s crust in the Altai-Sayan region) Russian Geology and Geophysics 36(10): 20–30 (in Russian).