Инд. авторы: Khokhryakov A.F., Palyanov Y.N., Borzdoy Y.M., Kozhukhov A.S., Shcheglov D.V.
Заглавие: Step Patterns on {100} Faces of Diamond Crystals As-Grown in Mg-Based Systems
Библ. ссылка: Khokhryakov A.F., Palyanov Y.N., Borzdoy Y.M., Kozhukhov A.S., Shcheglov D.V. Step Patterns on {100} Faces of Diamond Crystals As-Grown in Mg-Based Systems // Crystal Growth & Design. - 2018. - Vol.18. - Iss. 1. - P.152-158. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.7b01025; РИНЦ: 35515235; SCOPUS: 2-s2.0-85040165252; WoS: 000419749400021;
Реферат: eng: In this article, we report the unusual growth of diamond crystals produced in Mg C and Mg Ge C systems at high-pressure, high-temperature conditions. We have found that the growth of the habit {100} faces occurs by deposition of a substance (carbon) on two nonequivalent {100} and {111} surfaces. Precipitation of carbon atoms on the (100) plane occurs by elementary layers -with a thickness of about 0.1 and 0.2 mn. The change in the density of elementary steps leads to the formation of step bunches that transform into faceted macrostates with an increase in their thickness of more than 400 nm. The maximum inclination angle of macrostep ends corresponds to the {111} faces position. As a result, singular stable {111} microfacets are formed at the ends of the macrosteps, which themselves grow layer by layer. The deposition of carbon on {100} and {111} surfaces of one simple form of diamond crystals leads to the zonal structure of {100} growth sectors.
Ключевые слова: SURFACE; SINGLE-CRYSTAL; SYNTHETIC DIAMONDS; MAGNESIUM-BASED SYSTEMS; HIGH-TEMPERATURE CONDITIONS; HIGH-PRESSURE; MORPHOLOGY;
Издано: 2018
Физ. характеристика: с.152-158
Цитирование: 1. Sunagawa, I. Crystals: Growth, Morphology, & Perfection; Cambridge University Press: Cambridge, England, 2005. 2. Growth, Dissolution and Pattern Formation in Geosystems; Jamtveit, B., Meakin, P., Eds., Springer Science & Business Media: New York, 1999. 3. Chernov, A. A. Modem Crystallography III. Crystal Growth; Springer-Verlag: Berlin, 1984. 4. Akutsu, N.; Yamamoto, T. In Handbook of Crystal Growth; Nishinaga, T., Rudolph, P., Eds.; Elsevier: Amsterdam, 2015; Chapter 6, pp 266-313. 5. Akutsu, N. Adv. Condens. Matter Phys. 2017, 2017, 2021510 10.1155/2017/2021510 6. Plomp, M.; Nijdam, A. J.; van Enckevort, W. J. P. J. Cryst. Growth 1998, 193, 389-401 10.1016/S0022-0248(98)00531-4 7. Schick, M.; Dabringhaus, H.; Wandelt, K. J. Phys.: Condens. Matter 2004, 16, L33-L37 10.1088/0953-8984/16/6/L01 8. Thomas, T. N.; Land, T. A.; Casey, W. H.; DeYoreo, J. J. Phys. Rev. Lett. 2004, 92, 216103 10.1103/PhysRevLett.92.216103 9. Mitani, T.; Komatsu, N.; Takahashi, T.; Kato, T.; Harada, S.; Ujihara, T.; Matsumoto, Y.; Kurashige, K.; Okumura, H. J. Cryst. Growth 2015, 423, 45-49 10.1016/j.jcrysgro.2015.04.032 10. Bovenkerk, H. P. Am. Mineral. 1961, 46, 952-963 11. Tolansky, S. Proc. R. Soc. London, Ser. A 1962, 270, 443-451 10.1098/rspa.1962.0236 12. Palyanov, Y. N.; Kupriyanov, I. N.; Sokol, A. G.; Khokhryakov, A. F.; Borzdov, Y. M. Cryst. Growth Des. 2011, 11, 2599-2605 10.1021/cg2003468 13. Palyanov, Y. N.; Khokhryakov, A. F.; Borzdov, Y. M.; Kupriyanov, I. N. Cryst. Growth Des. 2013, 13, 5411-5419 10.1021/cg4013476 14. Palyanov, Y. N.; Kupriyanov, I. N.; Borzdov, Y. M.; Bataleva, Y. V. CrystEngComm 2015, 17, 7323-7331 10.1039/C5CE01265A 15. Khokhryakov, A. F.; Sokol, A. G.; Borzdov, Y. M.; Palyanov, Y. N. J. Cryst. Growth 2015, 426, 276-282 10.1016/j.jcrysgro.2015.06.022 16. Kanda, H.; Akaishi, M.; Setaka, N.; Yamaoka, S.; Fukunaga, O. J. Mater. Sci. 1980, 15, 2743-2748 10.1007/BF00550541 17. Yin, L. W.; Li, M. S.; Xu, B.; Song, Y. J.; Hao, Z. Y. Chem. Phys. Lett. 2002, 357, 498-504 10.1016/S0009-2614(02)00579-1 18. Gong, J. H.; Chen, Q. L.; Liu, S. N.; Yang, L. M.; Gao, J.; Li, W.; Bin, X. Mater. Res. Innovations 2015, 19, S9-32-S9-36 10.1179/1432891715Z.0000000001913 19. Palyanov, Y. N.; Borzdov, Y. M.; Kupriyanov, I. N.; Khokhryakov, A. F.; Nechaev, D. V. CrystEngComm 2015, 17, 4928-4936 10.1039/C5CE00897B 20. Palyanov, Y. N.; Kupriyanov, I. N.; Borzdov, Y. M.; Khokhryakov, A. F.; Surovtsev, N. V. Cryst. Growth Des. 2016, 16, 3510-3518 10.1021/acs.cgd.6b00481 21. Palyanov, Y. N.; Kupriyanov, I. N.; Khokhryakov, A. F.; Borzdov, Y. M. CrystEngComm 2017, 19, 4459-4475 10.1039/C7CE01083D 22. Khokhryakov, A. F.; Nechaev, D. V.; Palyanov, Y. N. J. Cryst. Growth 2016, 455, 76-82 10.1016/j.jcrysgro.2016.10.004 23. Khokhryakov, A. F.; Nechaev, D. V.; Palyanov, Y. N.; Kuper, K. E. Diamond Relat. Mater. 2016, 70, 1-6 10.1016/j.diamond.2016.09.012 24. Furthmuller, J.; Hafner, J.; Kresse, G. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 7337-7351 10.1103/PhysRevB.53.7334 25. Watanabe, H.; Takeuchi, D.; Yamanaka, S.; Okushi, H.; Kajimura, K.; Sekiguchi, T. Diamond Relat. Mater. 1999, 8, 1272-1276 10.1016/S0925-9635(99)00126-0 26. Tokuda, N.; Umezawa, H.; Kato, H.; Ogura, M.; Gonda, S.; Yamabe, K.; Okushi, H.; Yamasaki, S. Appl. Phys. Express 2009, 2, 055001 10.1143/APEX.2.055001 27. Tokuda, N. In Novel Aspects of Diamond: From Growth to Application; Yang, N., Ed.; Topics in Applied Physics; Spring: Berlin, 2015; Vol. 121, pp 1-29. 10.1007/978-3-319-09834-0-1 28. Hoeven, A. J.; Lenssinck, J. M.; Dijkkamp, D.; van Loenen, E. J.; Dieleman, J. Phys. Rev. Lett. 1989, 63, 1830-1832 10.1103/PhysRevLett.63.1830 29. Busmann, H.-G.; Zimmermann-Edling, W.; Sprang, H.; Güntherodt, H.-J.; Hertel, I. V. Diamond Relat. Mater. 1992, 1, 979-988 10.1016/0925-9635(92)90120-D 30. Bobrov, K.; Mayne, A.; Comtet, G.; Dujardin, G.; Hellner, L.; Hoffman, A. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195416 10.1103/PhysRevB.68.195416 31. van Enckevort, W. J. P.; Bennema, P.; van der Linden, W. H. Z. Phys. Chem. 1981, 124, 171-191 10.1524/zpch.1981.124.2.171 32. van Enckevort, W. J. P.; Janssen, G.; Vollenberg, W.; Schermer, J. J.; Giling, L. J.; Seal, M. Diamond Relat. Mater. 1993, 2, 997-1003 10.1016/0925-9635(93)90264-3 33. Land, T. A.; Martin, T. L.; Potapenko, S.; Palmore, G. T.; DeYoreo, J. J. Nature 1999, 399, 442-445 10.1038/20886