Инд. авторы: Shikin A.M., Voroshin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Ishida Y., Kimura A.
Заглавие: Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation
Библ. ссылка: Shikin A.M., Voroshin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Ishida Y., Kimura A. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation // 2D MATERIALS. - 2018. - Vol.5. - Iss. 1. - Art.015015. - ISSN 2053-1583.
Внешние системы: DOI: 10.1088/2053-1583/aa928a; РИНЦ: 35501149; SCOPUS: 2-s2.0-85040099677; WoS: 000413836300001;
Реферат: eng: A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k(II)-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.
Ключевые слова: BI2SE3; SB2TE3; FERROMAGNETISM; DIRAC-FERMION; ROOM-TEMPERATURE; surface photovoltaic effect; magnetically doped topological insulators; spin-polarized currents; time-resolved photoemission spectroscopy; 2D systems; electronic and spin structure; ELECTRICAL DETECTION; TORQUE;
Издано: 2018
Физ. характеристика: 015015
Цитирование: 1. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 2. Qi X-L, Hughes T L and Zhang S-C 2008 Phys. Rev. B 78 195424 3. Hsieh D et al 2009 Nature 460 1101 4. Zhang H, Liu C-X, Qi X-L, Dai1 X, Fang Z and Zhang S-C 2009 Nat. Phys. 5 438 5. Moore J 2009 Nat. Phys. 5 378 6. Li C H, van 't Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218 7. Fan Y et al 2014 Nat. Mater. 13 699 8. Mellnik A R et al 2014 Nature 511 449 9. Pesin D and MacDonald A H 2012 Nat. Mater. 11 409 10. Han W 2016 APL Mater. 4 032401 11. Kou X, Fan Y, Lang M, Upadhyaya P and Wang K L 2015 Solid State Commun. 215-6 34 12. Ren Z, Taskin A A, Sasaki S, Segawa K and Ando Y 2011 Phys. Rev. B 84 165311 13. Tang C S, Xia B, Zou X, Chen S, Ou H-W, Wang L, Rusydi A, Zhu J-X and Chia E E M 2013 Sci. Rep. 3 3513 14. Wang J, Lian B, Qi X-L and Zhang S-C 2015 Phys. Rev. B 92 081107 15. Chang C-Z et al 2013 Science 340 167 16. Chang C-Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S-C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 17. Yu R, Zhang W, Zhang H-J, Zhang S-C, Dai X and Fang Z 2010 Science 329 61 18. Dankert A, Geurs J, Kamalakar M V, Charpentier S and Dash P 2015 Nano Lett. 15 7976 19. Mc Iver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96 20. Ogawa N, Yoshimi R, Yasuda K, Tsukazaki A, Kawasaki M and Tokura Y 2016 Nat. Commun. 7 12246 21. Kastl C, Karnetzky C, Karl H and Holleitner A W 2015 Nat. Commun. 6 6617 22. Kastl C, Guan T, He X Y, Wu K H, Li Y Q and Holleitner A W 2012 Appl. Phys. Lett. 101 251110 23. Shikin A M, Klimovskikh I I, Filyanina M V, Rybkina A A, Pudikov D A, Kokh K A and Tereshchenko O E 2016 Phys. Solid State 58 1675 24. Shikin A M, Rybkina A A, Klimovskikh I I, Filianina M V, Kokh K A, Tereshchenko O E, Skirdkov P N, Zvezdin K A and Zvezdin A K 2016 Appl. Phys. Lett. 109 222404 25. Shikin A M, Rybkina A A, Klimovskikh I I, Tereshchenko O E, Bogomyakov A S, Kokh K A, Kimura A, Skirdkov P N, Zvezdin K A and Zvezdin A K 2017 2D Mater. 4 025055 26. Olbrich P et al 2014 Phys. Rev. Lett. 113 096601 27. Dantscher K et al 2015 Phys. Rev. B 92 165314 28. Plank H et al 2016 Phys. Rev. B 93 125434 29. Plank H, Danilov S N, Bel'kov V V, Shalygin V A, Kampmeier J, Lanius M, Mussler G, Grützmacher D and Ganichev S D 2016 J. Appl. Phys. 120 165301 30. Hosur P 2011 Phys. Rev. B 83 035309 31. Hajlaoui M et al 2014 Nat. Commun. 5 3003 32. Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z-X 2012 Phys. Rev. Lett. 108 117403 33. Crepaldi A, Ressel B, Cilento F, Zacchigna M, Grazioli C, Berger H, Bugnon P, Kern K, Grioni M and Parmigiani F 2012 Phys. Rev. B 86 205133 34. Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, Jarillo-Herrero P and Gedik N 2012 Phys. Rev. Lett. 109 127401 35. Neupane M et al 2015 Phys. Rev. Lett. 115 116801 36. Crepaldi A et al 2013 Phys. Rev. B 88 121404 37. Semenov Y G, Li X and Kim K W 2012 Phys. Rev. B 86 201401 38. Sanchez-Barriga J, Golias E, Varykhalov A, Braun J, Yashina L V, Schumann R, Minar J, Ebert H, Kornilov O and Rader O 2016 Phys. Rev. B 93 155426 39. Sanchez-Barriga J, Battiato M, Golias E, Varykhalov A, Yashina L V, Kornilov O and Rader O 2017 Appl. Phys. Lett. 110 141605 40. Ishida Y, Otsu T, Shimada T, Okawa M, Kobayashi Y, Iga F, Takabatake T and Shin S 2015 Sci. Rep. 5 8160 41. Kuroda K, Reimann J, Kokh K A, Tereshchenko O E, Kimura A, Güddec J and Höfer U 2017 Phys. Rev. B 95 081103 42. Kuroda K, Yaji K, Nakayama M, Harasawa A, Ishida Y, Watanabe S, Chen C-T, Kondo T, Komori F and Shin S 2016 Phys. Rev. B 94 165162 43. Kronik L and Shapira Y 1999 Sci. Rep. 37 1 44. Tanaka S, More S D, Murakami J, Itoh M, Fujii Y and Kamada M 2001 Phys. Rev. B 64 155308 45. Oka K and Aoki H 2009 Phys. Rev. B 70 081406 46. Inglot M, Dugaev V K, Sherman E Y and Barnas J 2015 Phys. Rev. B 91 195428 47. Wang Z, Li M, Yang L, Zhang Z and Gao X P A 2017 Nano Res. 10 1872 48. Yao J, Shao J, Wang Y, Zhao Z and Yang G 2015 Nanoscale 7 12535 49. Checkelsky J G, Ye J, Onose Y, Iwasa Y and Tokura Y 2012 Nat. Phys. 8 729 50. Xu S-Y et al 2012 Nat. Phys. 8 616 51. Chen Y L et al 2010 Science 329 659 52. Li B, Fan Q, Ji F, Liu Z, Pan H and Qiao S 2013 Phys. Lett. A 377 1925 53. Zhang J M, Zhu W, Zhang Y, Xiao D and Yao Y 2012 Phys. Rev. Lett. 109 266405 54. Larson P and Lambrecht W R L 2008 Phys. Rev. B 78 195207 55. Kul'bachinskii V A, Kaminskii A Y, Kindo K, Narumi Y, Suga K, Lostak P and Svanda P 2001 JETP Lett. 73 352 56. Wray L A, Xu S-Y, Xia Y Q, Hsieh D, Fedorov A V, Hor Y S, Cava R J, Bansil A, Lin H and Hasan M Z 2011 Nat. Phys. 7 32 57. Rosenberg G and Franz M 2012 Phys. Rev. B 85 195119 58. D'yakonov M I and Furman A S 1987 Sov. Phys. JETP 65 574 (http://www.jetp.ac.ru/cgi-bin/e/index/e/65/3/p574?a=list) 59. Zhu S et al 2015 Sci. Rep. 5 13213