Инд. авторы: Shatsky V.S., Malkovets V.G., Belousova E.A., Tretiakova I.G., Griffin W.L., Ragozin A.L., Wang Q., Gibsher A.A., O'Reilly S.Y.
Заглавие: Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton)
Библ. ссылка: Shatsky V.S., Malkovets V.G., Belousova E.A., Tretiakova I.G., Griffin W.L., Ragozin A.L., Wang Q., Gibsher A.A., O'Reilly S.Y. Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton) // Precambrian Research. - 2018. - Vol.305. - P.125-144. - ISSN 0301-9268.
Внешние системы: DOI: 10.1016/j.precamres.2017.11.017; РИНЦ: 35478914; SCOPUS: 2-s2.0-85037340755; WoS: 000424176100008;
Реферат: eng: According to present views, the crustal terranes of the Anabar province of the Siberian craton were initially independent blocks, separated from the convecting mantle at 3.1 (Daldyn terrane), 2.9 (Magan terrane) and 2.5 Ga (Markha terrane) (Rosen, 2003, 2004; Rosen et al., 1994, 2005, 2009). Previous studies of zircons in a suite of crustal xenoliths from kimberlite pipes of the Markha terrane concluded that the evolution of the crust of the Markha terrane is very similar to that of the Daldyn terrane. To test this conclusion we present results of U-Pb and Hf-isotope studies on zircons in crustal xenoliths from the Zapolyarnaya kimberlite pipe (Upper Muna kimberlite field), located within the Daldyn terrane, and the Botuobinskaya pipe (Nakyn kimberlite field) in the center of the Markha terrane. The data on xenoliths from the Botuobinskaya kimberlite pipe record tectonothermal events at 2.94, 2.8, 2.7 and 2 Ga. The event at 2 Ga caused Pb loss in zircons from a mafic granulite. U-Pb dating of zircons from the Zapolyarnaya pipe gives an age of 2.7 Ga. All zircons from the studied crustal xenoliths have Archean Hf model ages ranging from 3.65 to 3.11 Ga. This relatively narrow range suggests that reworking of the ancient crust beneath the Nakyn and Upper Muna kimberlite fields was minor, compared with the Daldyn and Alakit-Markha fields (Shatsky et al., 2016). This study, when combined with dating of detrital zircons, implies that tectonic-thermal events at 2.9-2.85, 2.75-2.7 and 2.0-1.95 Ga occurred everywhere on the Anabar tectonic province, and could reflect the upwelling of superplumes at 2.9, 2.7 and 2 Ga. The presence of the same tectonic-thermal events in the Daldyn and Markha terranes (Rosen et al., 2006a,b) supports the conclusion that the identification of the Markha terrane as a separate unit is not valid.
Ключевые слова: COMPLEX-SYSTEMS; ARCHEAN CRUST; TRACE-ELEMENT; HF-ISOTOPE; LAM-MC-ICPMS; LARGE IGNEOUS PROVINCES; KIMBERLITE PIPE YAKUTIA; EPISODIC CONTINENTAL GROWTH; SITU U-PB; DETRITAL ZIRCON;
Издано: 2018
Физ. характеристика: с.125-144
Цитирование: 1. Ai, Y., A revision of the garnet–clinopyroxene Fe2+–Mg exchange geothermometer. Contrib. Miner. Petrol. 111 (1994), 467–473. 2. Agashev, A.M., Pokhilenko, N.P., Tolstov, A.V., Polyanichko, V.V., Mal'kovets, V.G., Sobolev, N.V., New age data on kimberlites from the Yakutian Diamondiferous Province. Doklady Earth Sci. 399 (2004), 1142–1145. 3. Agashev, A.M., Pokhilenko, N.P., Mal'kovets, V.G., Sobolev, N.V., Sm-Nd isotopic system in garnet megacrysts from the Udachnaya kimberlite pipe (Yakutia) and petrogenesis of kimberlites. Dokl. Earth Sci. 407:3 (2006), 491–494. 4. Arndt, N., Davaille, A., Episodic earth evolution. Tectonophysics 609 (2013), 661–674. 5. Belousova, E.A., Reid, A.J., Griffin, W.L., O'Reilly, S.Y., Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: evidence from U-Pb and Hf isotopes in detrital zircon. Lithos 113 (2009), 570–582. 6. Belousova, E.A., Kostitsyn, Y.A., Griffi n, W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J., The growth of the continental crust: constraints from zircon Hf isotope data. Lithos 119 (2010), 457–466. 7. Black, L.P., Gulson, B.L., The age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. Bur. Miner. Resour. J. Aust. Geol. Geophys. 3 (1978), 227–232. 8. Brakhfogel, F.F., Geological Aspects of Kimberlite Magmatism in the Northeastern SIBERIAN Platform. 1984, Yakutian Inst. Geol., Yakutsk, 128 (in Russian). 9. Buzlukova, L.V., Shatsky, V.S., Sobolev, N.V., Specific structure of the lowermost Earth's crust at the Zagadochnaya kimberlite pipe, Yakutia. Russ. Geol. Geophys. 45:8 (2004), 992–1007. 10. Campbell, I.H., Allen, C.M., Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1 (2008), 554–558. 11. Cawood, P.A., Hawkesworth, C.J., Dhuime, B., The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125 (2013), 14–32. 12. Condie, K.C., Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth Planet. Sci. Lett. 163 (1998), 97–108. 13. Condie, K.C., Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322 (2000), 153–162. 14. Condie, K.C., Supercontinents and superplume events: distinguishing signals in the geologic record. Phys. Earth Planet. Interiors 146 (2004), 319–332. 15. Condie, K.C., Aster, R.C., Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambr. Res. 180 (2010), 227–236. 16. Condie, K.C., Davaille, A., Aster, R.C., Arndt, N., Upstairs-downstairs: supercontinents and large igneous provinces, are they related?. Int. Geol. Rev. 57:11–12 (2015), 1341–1348. 17. Davis, G.L., Sobolev, N.V., Kharkiv, A.D., New data on the age of Yakutian kimberlites (U–Pb zircon method). Doklady Akademii Nauk SSSR 254 (1980), 175–179 (in Russian). 18. Donskaya, T.V., Gladkochub, D.P., Pisarevsky, S.A., Poller, U, Mazukabzova, A.M, Bayanova, T.B., Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: new insight into its architecture and history. Precambr. Res. 170 (2009), 61–72. 19. Eggleton, R., Weathering of enstatite to talc through a sequence of transitional phases. Clays Clay Miner. 30 (1982), 11–20. 20. Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70, 2006, A158. 21. Ellis, D.J., Green, D.H., An experimental study of the effect of Ca garnet–clinopyroxene, Fe–Mg exchange equilibria. Contrib. Miner. Petrol. 79 (1979), 13–22. 22. Ernst, R., Bleeker, W., Large igneous province (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2,5 Ga to present. Can. J. Earth Sci. 47 (2010), 695–739. 23. Ferry, J.M., Spear, F.S., Experimental calibration of the partitioning between biotite and garnet. Contrib. Miner. Petrol. 66 (1978), 113–117. 24. Gladkochub, D., Pisarevsky, S., Donskaya, T., Natapov, L., Mazukabzov, A., Stanevich, A., Sklyarov, E., The Siberian Craton and its evolution in terms of the Rodinia hypothesis. Episodes 29 (2006), 169–174. 25. Gladkochub, D.P., Donskaya, T.V., Reddy, S.M., Poller, U., Bayanova, T.B., Mazukabzov, A.M., Dril, S., Todt, W., Pisarevsky, S.A., Paleoproterozoic to Eoarchaean crustal growth in southern Siberia: a Nd-isotope synthesis. Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S., (eds.) Paleoproterozoic Supercontinents and Global Evolution, 2009, Geological Society of London, Special Publication 323, 127–143. 26. Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P., The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1999), 1–35. 27. Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.R., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64 (2000), 133–147. 28. Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 61 (2002), 237–269. 29. Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambr. Res. 131 (2004), 231–282. 30. Griffin, W.L., Pearson, N.J., Belousova, E.A., Saeed, A., Reply to “Comment to short communication ‘Comment: Hf-isotope heterogeneity in zircon 91500’ by W.L. Griffin, N.J. Pearson, E.A. Belousova, A. Saeed (Chemical Geology 233 (2006) 358–363)” by F. Corfu. Chem. Geol. 244 (2007), 354–356. 31. Griffin, W.L., Belousova, E.A., O'Neill, C., O'Reilly, S.Y., Malkovets, V., Pearson, N.J., Spetsius, S., Wilde, S.A., The world turns over: Hadean-Archean crust–mantle evolution. Lithos 189 (2014), 2–15. 32. Gusev, N.I., Rudenko, V.E., Berezhnaya, N.G., Skublov, S.G., Moreva, N.V., Larionov, A.N., Lepekhina, E.N., Age Daldyn series granulites of Anabar Shield. Reg. Geol. Metall. 52 (2012), 29–38 (in Russian). 33. Gusev, N.I., Rudenko, V.E., Berezhnaya, N.G., Skublov, S.G., Larionov, A.N., Isotope-geochemical features and age (SHRIMP II) of metamorphic and igneous rocks in the Kotuykan-Monkholinskaya zone of the Anabar Shield. Reg. Geol. Metall. 54 (2013), 45–59 (in Russian). 34. Gusev, N.I., Rudenko, V.E., Sergeeva, L.Yu., Lokhov, K.I., Berezhnaya, N.G., Larionov, A.N., Archean granulites of Dzhelinda blok Anabar Shield (Siberian Craton): geochemistry, age, isotopic characteristics. Reg. Geol. Metall. 66 (2016), 30–44 (in Russian). 35. Gurnis, M., Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332 (1988), 695–699. 36. Hawkesworth, C., Kemp, A.I.S., Evolution of continental crust. Nature 443 (2006), 811–817. 37. Hawkesworth, C.J., Cawood, P., Kemp, T., Storey, C., Dhuime, B., Geochemistry: a matter of preservation. Science 323 (2009), 49–50. 38. Hawkesworth, C., Dhuime, B., Pietranik, A., Cawood, P., Kemp, T., Storey, C., The generation and evolution of the continental crust. J. Geol. Soc. 167 (2010), 229–248. 39. Hawkesworth, C., Cawood, P., Dhuime, B., Continental growth and the crustal record. Tectonophysics 609 (2013), 651–660. 40. Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211 (2004), 47–69. 41. Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439 (2006), 580–583. 42. Kempton, P.D., Harmon, R.S., Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim. Cosmochim. Acta 56 (1992), 971–986. 43. Khain, V.E., Large-scale cyclicity in the Earth's tectonic history and its possible origin. Geotectonics 34:6 (2000), 431–441. 44. Khudoley, A., Chamberlain, K., Ershova, V., Sears, J., Prokopiev, A., MacLean, J., Kazakova, G., Malyshev, S., Molchanov, A., Kullerud, K., Toro, J., Miller, E., Veselovsky, R., Li, A., Chipley, D., Proterozoic supercontinental restorations: constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambr. Res. 259 (2015), 78–94. 45. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. Geofiz. 38 (1997), 91–99. 46. Kochnev, B.B., Proshenkin, A.I., Pokrovskiy, B.G., Neoproterozoic glacial deposits in the central part of the Siberian platform. Geodynamic Evolution of the Lithosphere of the Central Asian Orogenic Belt (From Ocean to Continent, Transaction of the Conference), 2013, Academy of Science Press, Irkutsk, 131–133. 47. Kohn, M.J., Spear, F.S., Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am. Mineral. 75 (1990), 89–96. 48. Koreshkova, M.Yu., Downes, H., Nikitina, L.P., Vladykin, N.V., Larionov, A.N., Sergeev, S.A., Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambr. Res. 168 (2009), 197–212. 49. Kotov, A.B., Sal'nikova, E.B., Glebovitsky, V.A., Kovach, V.P., Larin, A.M., Velikoslavinsky, S.D., Zagornaya, N.Yu., Sm-Nd isotopic provinces of the aldan shield. Doklady Earth Sci. 410:7 (2006), 1066–1069. 50. Kovach, V.P., Kotov, A.B., Smelov, A.P., Starosel'tsev, K.V., Sal'nikova, E.B., Zagornaya, N.Yu., Safronov, F.F., Pavlushin, A.D., Evolutionary stages of the continental crust in the buried basement of the Eastern Siberian platform. Petrology 8:4 (2000), 394–408. 51. Levchenkov, O.A., Gaidamako, I.M., Levskii, L.K., Komarov, A.N., Yakovleva, S.Z., Rizvanova, N.G., Makeev, A.F., U-Pb age of zircon from the Mir and 325 Let Yakutii pipes. Doklady Earth Sci. 400 (2005), 99–101. 52. Li, Z.-X., Zhong, S., Supercontinent–superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Precambr. Res. 176 (2009), 143–156. 53. Luts, B.G., Oksman, V.S., Deep Erodated Fault Zones of the Anabar Shield M. 1990, Nauka, 260 (in Russian). 54. Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y., Wood, B.J., Diamond, subcalcic garnet, and mantle metasomatism: kimberlite sampling patterns define the link. Geology 35 (2007), 339–342. 55. Malkovets, V.G., Griffin, W.L., Pearson, N.J., Rezvukhin, D.I., O'Reilly, S.Y., Pokhilenko, N.P., Garanin, V.K., Spetsius, Z.V., Litasov, K.D., 2012. Late metasomatic addition of garnet to the SCLM: Os-isotope evidence. Extended Abstracts of the 10th International Kimberlite Conference, Bangalore, India, Long Abstract 10IKC-173. 56. Maruyama, S., Santosh, M., Zhao, D., Superplume, supercontinent, and postperovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary. Gondwana Res. 11 (2007), 7–37. 57. Moecher, D.P., Essene, E.J., Anovizt, L.M., Calculation and application of clinopyroxene–garnet–plagioclase–quartz geobarometer. Contrib. Miner. Petrol. 100 (1988), 92–106. 58. Moorbath, S., Taylor, P.N., Isotopic evidence for continental growth in the Precambrian. Kröner, A., (eds.) Precambrian Plate Tectonics, 1981, Elsevier, Amsterdam, 491. 59. Moyen, J.-F., Paquette, J.L., Ionov, D.A., Gannoun, A., Korsakov, A.V., Golovin, A.V., Moine, B.N., Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xeno-liths at Udachnaya, Siberian craton. Earth Planet. Sci. Lett. 457 (2017), 149–159. 60. Neymark, L.A., Nemchin, A.A., Rosen, O.M., Serenko, V.P., Spetsius, Z.V., Shulesko, Sm/Nd isotopic systems in lower crustal xenoliths of Yukutian kimberlites. Doklady Russ. Acad. Sci. 327 (1992), 374–378 (in Russian). 61. Nutman, A.P., Chernyshev, I.V., Baadsgaard, H., Smelnv, A.P., The Aldan Shield of Siberia, USSR: the age of its Archeun components and evidence for widespread reworking in the mid-Pruterozoic. Precambr. Res. 54 (1992), 195–210. 62. Pearson, D.G., Parman, S.W., Nowell, G.M., A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449 (2007), 202–205. 63. Pearson, N.J., Griffin, W.L., O'Reilly, S.Y., Precision of in situ isotope ratio measurements by LAM-MC-ICPMS. Geochim. Cosmochim. Acta, 72, 2008, A732. 64. Perchuk, L.L., Lavrent'eva, I.V., Experimental investigation in the system cordierit–garnet–biotite. Saxena, S.K., (eds.) Kinetics and Equilibrium in Mineral Reaction, vol. 3, 1983, Springer Verlag, Berlin, 199–239. 65. Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W., Multistage magmatic and metamorphic evolution in the Southern Siberian craton: archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambr. Res. 136 (2005), 353–368. 66. Prokoph, A., Ernst, R.E., Buchan, K.L., Time-series analysis of large igneous provinces: 3500 Ma to present. J. Geol. 112 (2004), 1–22. 67. Ravna, E.K., The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. Metamorph. Geol. 18 (2000), 211–219. 68. Reddy, S.M., Evans, D.A.D., Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S., (eds.) Palaeoproterozoic Supercontinents and Global Evolution, 2009, Geological Society, London, 1–26 Special Publications, 323. 69. Reymer, A., Schubert, G., Rapid growth of some major segments of continental crust. Geology 14 (1986), 299–302. 70. Rogers, J.J., Santosh, M., Configuration of Columbia, a Neoproterozoic supercontinent. Gondwana Res. 5 (2002), 5–22. 71. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archean and early Proterozoic evolution of the Siberian craton, a preliminary assessment. Condie, K.C., (eds.) Archean Crustal Evolution, 1994, Elsevier, Amsterdam, 411–459. 72. Rosen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., Bibikova, E.V., Zlobin, V.L., Early Proterozoic terranes, collision zones, and associated anorthosites in the northerneast of the Siberian craton isotope geochemistry and age characteristics. Geologia I Geofizika 41 (2000), 163–180 (in Russian). 73. Rosen, O.M., Serenko, V.P., Manakov, A.Y., Zinchuk, N.N., Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Russ. Geol. Geophys. 43 (2002), 6–26. 74. Rosen, O.M., Siberian craton: tectonic zonation and stages of evolution. Geotectonic 37 (2003), 175–192. 75. Rosen, O.M., Early precambrian of the east Siberian platform. Miner. J. (Ukraine) 26:3 (2004), 75–87 (in Russian). 76. Rosen, O.M., Manakov, A.V., Serenko, V.P., Paleoproterozoic collisional system and diamondiferous lithospheric keel of the Yakutian kimberlite province. Russ. Geol. Geophys. 46 (2005), 1259–1272. 77. Rosen, O.M., Levsky, L.K., Zhuravlev, D.Z., Rotman, A.Ya., Spetsiu, S.Z.V., Makeev, A.F., Zinchuk, N.N., Manakov, A.V., Serenko, V.P., Palaeoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigr. Geol. Correl. 14 (2006), 581–601. 78. Rosen, O.M., Manakov, A.V., Zinchu, K.N.N., 2006b. Siberian craton: origin, diamond potential. In: Mityukhin, S.I. (Ed.). Moscow, Scientific World. 210 pp. (in Russian). 79. Rosen, O.M., Levskii, L.K., Zhuravlev, D.Z., Spetsius, Z.V., Rotman, A.Ya., Zinchuk, N.N., Manakov, A.V., The Anabar collisional system: a 600-Ma compression within the Columbia super-Continent (2.0–1.3 Ga). Dokl. Akad. Nauk SSSR 417:6 (2007), 606–809 (in Russian). 80. Rosen, O.M., Soloviev, A.V., Zhuravlev, D.Z., Thermal evolution of the northeastern Siberian platform in the light of apatite fission-track dating of the deep drill core. Izv. Phys. Solid Earth 45 (2009), 919–929. 81. Shatsky, V.S., Buzlukova, L.V., Jagoutz, E., Koz'menko, O.A., Mityukhin, S.I., Structure and evolution of the lower crust of the Daldyn-Alakit district in the Yakutian diamond province (from data on xenoliths). Russ. Geol. Geophys. 46 (2005), 1273–1289. 82. Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., Gibsher, A.A., O'Reilly, S.Y., Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambr. Res. 282 (2016), 1–20. 83. Smelov, A.P., Kovach, V.P., Gabyshev, V.D., Kotov, A.B., Tectonic structure and age of the basement in the eastern part of the North Asian craton. Otechestvennaya Geol. 6 (1998), 6–10 (in Russian). 84. Smelov, A.P., Timofeev, V.F., The age of the North Asian Cratonic basement: an overview. Gondwana Res. 12 (2007), 279–288. 85. Spencer, C.J., Cawood, P.A., Hawkesworth, C.J., Raub, T.D., Prave, A.R., Roberts, N.M.W., Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record. Geology 42 (2014), 451–454. 86. Spencer, C.J., Cawood, P.A., Hawkesworth, C.J., Raub, T.D., Prave, A.R., Roberts, N.M.W., Horstwood, M.S.A., Whitehous, M.J., EIMF, Generation and preservation of continental crust in the Grenville Orogeny. Geosi. Front. 6 (2015), 357–372. 87. Stein, M., Hofmann, A.W., Mantle plumes and episodic crustal growth. Nature 372 (1994), 63–68. 88. Sun, J., Liu, C.Z., Tappe, S., Kostrovitsky, S.I., Wu, F.Y., Yakovlev, D., Yang, Y.H., Yang, J.H., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 404 (2014), 283–295. 89. Suvorov, V.D., Melnik, E.A., Manakov, A.V., Structure of the Daldyn-Alakit kimberlite area (Western Yakutia) from DSS data and gravity modeling results. Izvestya/Phys. Solid Earth 5 (2005), 371–382. 90. Thompson, A.B., Mineral reactions in pelitic rocks. II Calculations of some P–T-X(Fe–Mg) phase relations. Am. J. Sci. 276 (1976), 425–454. 91. Tretiakova, I.G., Belousova, E.A., Malkovets, V.G., Griffin, W.L., Piazolo, S., Pearson, N.J., O'Reilly, S.Y., Nishido, H., Recurrent magmatic activity on a lithosphere-scale structure: crystallization and deformation in kimberlitic zircons. Gondwana Res. 42 (2017), 126–132. 92. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., Kapitonov, I.N., U-Pb (SHRIMP II), Lu–Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: implications for the Neoarchaean evolution of the Siberian Craton. Gondwana Res. 21 (2012), 801–817. 93. Voice, P.J., Kowalevski, M., Errikson, K.A., Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119 (2011), 109–126. 94. Wells, P.R.A., Pyroxene thermometry in simple and complex systems. Contrib. Miner. Petrol. 62 (1977), 129–139. 95. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J.C., Speigel, W., 3 Natural zircon standards for U-Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand. Newslett. 19 (1995), 1–23. 96. Wood, B.J., Banno, S., Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Miner. Petrol. 42 (1973), 109–124. 97. Woodhead, J.D., Hergt, J.M., A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res. 29 (2005), 183–195. 98. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Sci. Rev. 59 (2002), 125–162.