Цитирование: | 1. Acu, A.M., Gonska, H.: Generalized Alomari Functionals. Mediterr. J. Math. 14, 1-17 (2017)
2. Bachar, M., Guessab, A.: A simple necessary and sufficient condition for th enrichment of the Crouzeix-Raviart element. Appl. Anal. Discrete Math. 10, 378-393 (2016)
3. Bachar, M., Guessab, A.: Characterization of the existence of an enriched linear finite element approximation using biorthogonal systems. Results Math. 70(3), 401-413 (2016)
4. Brenner, S.C.: Forty years of the Crouzeix-Raviart element. Numer. Methods Part. Differ. Equ. 31, 367-396 (2015)
5. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7, 33-76 (1973)
6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
7. Guessab, A., Semisalov, B.: BIT Numerical Mathematics (2018)
8. Guessab, A., Nouisser, 0., Pecaric, J.: A multivariate extension of an inequality of Brenner-Alzer. Arch. Math. (Basel) 98(3), 277-287 (2012)
9. Guessab, A., Schmeisser, G.: Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 73(247), 1365-1384 (2004)
10. Guessab, A.: Approximations of differentiable convex functions on arbitrary convex polytopes. Appl. Math. Comput. 240, 326-338 (2014)
11. Hammer, P.C.: The midpoint method of numerical integration. Math. Mag. 31, 193-195 (1958)
12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Texts in Applied Mathematics, vol. 54, Springer, New York (2008)
13. Mitroi, F.C., Spiridon, C.I.: Refinements of Hermite-Hadamard inequality on simplices. Math. Rep. (Bucur.) 15, 69-78 (2013)
14. Ouazzi, A., Turek, S.: Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations. J. Numer. Math. 15(4), 299-322 (2007)
15. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)
16. Vermolen, F., Segal, G.: On an Integration Rule for Products of Barycentric Coordinates Over Simplexes in Rd, Technical report 17-02. Delft University of Technology, DIAM (2017)
17. Wasowicz, S.: Hermite-Hadamard-type inequalities in the approximate integration. Math. Inequal. Appl. 11, 693-700 (2008)
18. Zlatko, P.: Improvements of the Hermite-Hadamard inequality for the simplex. J. Inequal. Appl. 2017(1), 3 (2017)
|