Инд. авторы: Shtyrina O.V., Fedoruk M.P., Kivshar Y.S., Turitsyn S.K.
Заглавие: Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
Библ. ссылка: Shtyrina O.V., Fedoruk M.P., Kivshar Y.S., Turitsyn S.K. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers // Physical Review A - Atomic, Molecular, and Optical Physics. - 2018. - Vol.97. - Iss. 1. - Art.013841. - ISSN 1050-2947. - EISSN 1094-1622.
Внешние системы: DOI: 10.1103/PhysRevA.97.013841; РИНЦ: 35496710; SCOPUS: 2-s2.0-85041035813; WoS: 000423426200013;
Реферат: eng: We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Ключевые слова: CONFINEMENT; PROPAGATION; EQUATION; STABILITY; OPTICAL SOLITONS; PULSE-COMPRESSION; ATTRACTIVE INTERACTIONS; BOSE-EINSTEIN CONDENSATE; WAVE COLLAPSE; DYNAMICS;
Издано: 2018
Физ. характеристика: 013841
Цитирование: 1. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003). 2. S. K. Turitsyn, Theor. Math. Phys. 64, 797 (1985). TMPHAH 0040-5779 10.1007/BF01017959 3. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012). PHUSEY 1063-7869 10.3367/UFNe.0182.201206a.0569 4. E. A. Kuznetsov, Top. Appl. Phys. 114, 175 (2009) 9780-3873 10.1007/978-0-387-34727-1-7; 5. Self-Focusing: Past and Present, edited by R. W. Boyd, S. G. Lukishova, and Y. R. Shen (Springer, New York, 2009). 6. C. Sulem and P. L. Sulem, Nonlinear Schrodinger Equations: Self-Focusing and Wave Collapse (Springer, New York, 2007). 7. M. D. Spector, G. E. Fal'kovich, and S. K. Turitsyn, Phys. Lett. A 99, 271 (1983). PYLAAG 0375-9601 10.1016/0375-9601(83)90882-4 8. E. G. Falkovich and S. K. Turitsyn, Sov. Phys. JETP 62, 146 (1985). 9. S. K. Turitsyn, Phys. Rev. A 47, R27 (1993). PLRAAN 1050-2947 10.1103/PhysRevA.47.R27 10. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.84.3582 11. L. Bergé and A. Couairon, Phys. Rev. Lett. 86, 1003 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.1003 12. A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk, O. V. Shtyrina, and S. K. Turitsyn, Opt. Lett. 40, 721 (2015). OPLEDP 0146-9592 10.1364/OL.40.000721 13. P. M. Lushnikov and N. Vladimirova, Opt. Express 23, 31120 (2015). OPEXFF 1094-4087 10.1364/OE.23.031120 14. V. V. Flambaum and E. A. Kuznetsov, Nonlinear dynamics of ultra-cold gases: Collapse of Bose gas with attractive interaction, in Proceedings of NATO Advanced Research Workshop on Singularities in Fluids, Plasmas and Optics (Heraklion, Greece), edited by R. E. Caflisch and G. C. Papanicolaou (Kluwer Academic, Dordrecht, The Netherlands, 1992). 15. Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000). PRPLCM 0370-1573 10.1016/S0370-1573(99)00106-4 16. X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.82.4631 17. S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, Phys. Rev. Lett. 105, 263901 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.263901 18. F. Eilenberger, K. Prater, S. Minardi, R. Geiss, U. Ropke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and T. Pertsch, Phys. Rev. X 3, 041031 (2013). 2160-3308 10.1103/PhysRevX.3.041031 19. P. J. Winzer, IEEE Photonics J. 4, 647 (2012). 1943-0655 10.1109/JPHOT.2012.2189379 20. D. J. Rochardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013). 1749-4885 10.1038/nphoton.2013.94 21. W. H. Renninger and F. W. Wise, Nat. Commun. 4, 1719 (2013). 2041-1723 10.1038/ncomms2739 22. A. Hasegawa, Opt. Lett. 5, 416 (1980). OPLEDP 0146-9592 10.1364/OL.5.000416 23. B. Crosignani and P. D. Porto, Opt. Lett. 6, 329 (1981). OPLEDP 0146-9592 10.1364/OL.6.000329 24. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt. B 7, R53 (2005). JOBOFD 1464-4266 10.1088/1464-4266/7/5/R02 25. A. Mafi, J. Lightwave Technol. 30, 2803 (2012). JLTEDG 0733-8724 10.1109/JLT.2012.2208215 26. L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nat. Photonics 9, 306 (2015). 1749-4885 10.1038/nphoton.2015.61 27. S. Buch and G. P. Agrawal, Opt. Lett. 40, 225 (2015). OPLEDP 0146-9592 10.1364/OL.40.000225 28. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Opt. Express 23, 3492 (2015). OPEXFF 1094-4087 10.1364/OE.23.003492 29. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, Phys. Rev. Lett. 115, 223902 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.223902 30. K. Krupa, A. Tonello, A. Barthelemy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, Phys. Rev. Lett. 116, 183901 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.183901 31. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 66, 043603 (2002). PLRAAN 1050-2947 10.1103/PhysRevA.66.043603 32. B. B. Baizakov, B. A. Malomed, and M. Salerno, Phys. Rev A 70, 053613 (2004). PLRAAN 1050-2947 10.1103/PhysRevA.70.053613 33. E. V. Shuryak, Phys. Rev. A 54, 3151 (1996). PLRAAN 1050-2947 10.1103/PhysRevA.54.3151 34. C. A. Sackett, H. T. C. Stoof, and R. G. Hulet, Phys. Rev. Lett. 80, 2031 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.80.2031 35. J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Nature (London) 408, 692 (2000). NATUAS 0028-0836 10.1038/35047030 36. L. Bergé, T. J. Alexander, and Yu. S. Kivshar, Phys. Rev. A 62, 023607 (2000). PLRAAN 1050-2947 10.1103/PhysRevA.62.023607 37. T. Tsurumi, H. Morise, and M. Wadati, Int. J. Mod. Phys. B 14, 655 (2000) IJPBEV 0217-9792 10.1142/S0217979200000595; 38. H. Morise and M. Wadati, J. Phys. Soc. Jpn. 70, 3529 (2001). JUPSAU 0031-9015 10.1143/JPSJ.70.3529 39. A. V. Rybin, G. G. Varzugin, M. Lindberg, J. Timonen, and R. K. Bullough, Phys. Rev. E 62, 6224 (2000). 1063-651X 10.1103/PhysRevE.62.6224 40. B. J. Cusack, T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, Phys. Rev. A 65, 013609 (2001). PLRAAN 1050-2947 10.1103/PhysRevA.65.013609 41. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 98, 053901 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.053901 42. J. Carpenter, B. J. Eggleton, and J. Schröder, Nat. Photonics 9, 751 (2015). 1749-4885 10.1038/nphoton.2015.188 43. A. A. Kolokolov and N. B. Vakhitov, Radiophys. Quantum Electron. 16, 783 (1973). RPQEAC 0033-8443 10.1007/BF01031343 44. S. Raghavan and G. P. Agrawal, Opt. Commun. 180, 377 (2000). OPCOB8 0030-4018 10.1016/S0030-4018(00)00727-6