Цитирование: | 1. Alexeiev D.V., Ryazantsev A.V., Kröner A., Tretyakov A.A., Xia X., Liu D.Y., 2011. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili mountains, southern Kazakhstan: implications for the earliest stages of accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences 42 (5), 805-820. https://doi.org/10.1016/j.jseaes.2010.09.004.
2. Bodinier J.-L., Godard M., 2003. Orogenic, ophiolitic and abyssal peridotites. In: H.D. Holland, K.K. Turekian (Eds.), The mantle and core. Treatise on Geochemistry, vol. 2, p. 103-170. https://doi.org/10.1016/B0-08-043751-6/02004-1.
3. Carswell D.A., Harvey M.A., Al-Samman A., 1983. The petrogenesis of constraining Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bulletin de minéralogie 106 (6), 727-750.
4. Connolly J.A.D., 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236 (1-2), 524-541. https://doi.org/10.1016/j.epsl.2005.04.033.
5. Cruciani G., Franceschelli M., Groppo C., Brogioni N., Vaselli O., 2008. Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from the Sierra de San Luis (Argentina): a key to post-magmatic evolution. Journal of Metamorphic Geology 26 (7), 759-774. https://doi.org/10.1111/j.1525-1314.2008.00786.x.
6. Degtyarev K.E., Yakubchuk A.S., Tretyakov A.A., Kotov A.B., Kovach V.P., 2017. Precambrian geology of the Kazakh Uplands and Tien Shan: An overview. Gondwana Research 47, 44-75. https://doi.org/10.1016/j.gr.2016.12.014.
7. Godard G., Martin S., Prosser G., Kienast J.R., Morten L., 1996. Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics 259 (4), 313-341. https://doi.org/10.1016/0040-1951(95)00145-X.
8. Godard M., Awaji S., Hansen H., Hellebrand E., Brunelli D., Johnson K., Yamasaki T., Maeda J., Abratis M., Christie D., Kato Y., Mariet C., Rosner M., 2009. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (1-2), 110-122. https://doi.org/10.1016/j.epsl.2008.12.034.
9. Hegner E., Klemd R., Kröner A., Corsini M., Alexeiev D.V., Iaccheri L.M., Zack T., Dulski P., Xia X., Windley B.F., 2010. Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. American Journal of Science 310 (9), 916-950. https://doi.org/10.2475/09.2010.07.
10. Janak M., Froitzheim N., Vrabec M., Krogh Ravna E.J., De Hoog J.C.M., 2006. Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps. Journal of Metamorphic Geology 24 (1), 19-31. https://doi.org/10.1111/j.1525-1314.2005.00619.x.
11. Katayama I., Maruyama S., Parkinson C.D., Terada K., Sano Y., 2001. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters 188 (1-2), 185-198. https://doi.org/10.1016/S0012-821X(01)00319-3.
12. Meyer M., Klemd R., Konopelko D., 2013. High-pressure mafic oceanic rocks from the Makbal complex, Tianshan mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone. Lithos 177, 207-225. https://doi.org/10.1016/j.lithos.2013.06.015.
13. Obata M., Ozawa K., Naemura K., Miyake A., 2012. Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics. Mineralogy and Petrology 107 (6), 881-895. https://doi.org/10.1007/s00710-012-0260-4.
14. Orozbaev R.T., Takasu A., Bakirov A.B., Tagiri M., Sakiev K.S., 2010. Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, Northern Tien-Shan, Kyrgyzstan: a record from initiation of subduction through to oceanic closure by continent-continent collision. Journal of Metamorphic Geology 28 (3), 317-339. https://doi.org/10.1111/j.1525-1314.2010.00865.x.
15. Pilitsyna A.V., Tretyakov A.A, Degtyarev K.E., Cuthbert S.J., Batanova V.G., Kovalchuk E.V., 2017. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications. Journal of Asian Earth Sciences (in press). https://doi.org/10.1016/j.jseaes.2017.03.027.
16. Reverdatto V.V., Selyatitsky A.Yu., Carswell D.A., 2008. Geochemical distinctions between "crustal" and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes. Russian Geology and Geophysics 49 (2), 73-90. https://doi.org/10.1016/j.rgg.2008.01.002.
17. Sarp H., Bertrand J., McNear E., 1976. Vuagnatite, CaAl(OH)SiO4, a new natural calcium aluminum nesosilicate. American Mineralogist 61 (9-10), 825-330.
18. Zhang L., Du J.-X., Lü Z., Yang X., Gou L.-L., Xia B., Chen Z.-Y., Wei C.-J., Song S.G., 2013. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: Peak metamorphic age and P-T path. Chinese Scientific Bulletin 58 (35), 4378-4383. https://doi.org/10.1007/s11434-013-6074-x.
|