Инд. авторы: Gavryushkin P.N., Martirosyan N.S., Inerbaev T.M., Popov Z.I., Rashchenko S.V., Likhacheva A.Y., Lobanov S.S., Goncharov A.F., Prakapenka V.B., Litasov K.D.
Заглавие: Aragonite-II and CaCO3-VII: New High-Pressure, High-Temperature Polymorphs of CaCO3
Библ. ссылка: Gavryushkin P.N., Martirosyan N.S., Inerbaev T.M., Popov Z.I., Rashchenko S.V., Likhacheva A.Y., Lobanov S.S., Goncharov A.F., Prakapenka V.B., Litasov K.D. Aragonite-II and CaCO3-VII: New High-Pressure, High-Temperature Polymorphs of CaCO3 // Crystal Growth & Design. - 2017. - Vol.17. - Iss. 12. - P.6291-6296. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.7b00977; РИНЦ: 32867937; РИНЦ: 35517818; WoS: 000417669900018;
Реферат: eng: The importance for the global carbon cycle, the P-T phase diagram of CaCO3 has been under extensive investigation since the invention of the high-pressure techniques. However, this study is far from being completed. In the present work, we show the existence of two new high-pressure polymorphs of CaCO3. The crystal structure prediction performed here reveals a new polymorph corresponding to distorted aragonite structure and named aragonite-II. In situ diamond anvil cell experiments confirm the presence of aragonite-II at 35 GPa and allow identification of another high-pressure polymorph at 50 GPa, named CaCO3-VII. CaCO3-VII is a structural analogue of CaCO3-P2(1)/c-1, predicted theoretically earlier. The P-T phase diagram obtained based on a quasi-harmonic approximation shows the stability field of CaCO3-VII and aragonite-II at 30-50 GPa and 0-1200 K. Synthesized earlier in experiments on cold compression of calcite, CaCO3-VI was found to be metastable in the whole pressure temperature range.
Ключевые слова: SYSTEM; BEHAVIOR; REFINEMENT; COMPRESSIBILITY; CARBON; PROGRAM; EARTHS MANTLE; PHASE-TRANSITIONS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE PREDICTION;
Издано: 2017
Физ. характеристика: с.6291-6296
Цитирование: 1. Dasgupta, R.; Hirschmann, M. M. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 2010, 298, 1-13. 2. Sleep, N. H.; Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res.: Planets 2001, 106, 1373-1399. 3. Litasov, K. Physicochemical conditions for melting in the Earth's mantle containing a C-O-H fluid (from experimental data). Russ. Geol. Geophys. 2011, 52, 475-492. 4. Ono, S.; Kikegawa, T.; Ohishi, Y. High-pressure transition CaCO3. Am. Mineral. 2007, 92, 1246-1249. 5. Ono, S.; Kikegawa, T.; Ohishi, Y.; Tsuchiya, J. Post-aragonite phase transformation in CaCO3 at 40 GPa. Am. Mineral. 2005, 90, 667-671. 6. Santillán, J.; Williams, Q. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am. Mineral. 2004, 89, 1348-1352. 7. Palaich, S. E.; Heffern, R. A.; Hanfland, M.; Lausi, A.; Kavner, A.; Manning, C. E.; Merlini, M. High-pressure compressibility and thermal expansion of aragonite. Am. Mineral. 2016, 101, 1651-1658. 8. Merlini, M.; Hanfland, M.; Crichton, W. CaCO3-III and CaCO3- VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth's mantle. Earth Planet. Sci. Lett. 2012, 333-334, 265-271. 9. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 104101. 10. Koch-Müller, M.; Jahn, S.; Birkholz, N.; Ritter, E.; Schade, U. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys. Chem. Miner. 2016, 43, 545-561. 11. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103. 12. Oganov, A. R.; Ono, S.; Ma, Y.; Glass, C. W.; Garcia, A. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 2008, 273, 38-47. 13. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R.; Goncharov, A. F. Raman spectroscopy and x-ray diffraction of sp3CaCO3 at lower mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 104101. 14. Cerenius, Y.; Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 2000, 306, 26-29. 15. Prakapenka, V.; Kubo, A.; Kuznetsov, A.; Laskin, A.; Shkurikhin, O.; Dera, P.; Rivers, M.; Sutton, S. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Res. 2008, 28, 225-235. 16. Lobanov, S. S.; Chen, P.-N.; Chen, X.-J.; Zha, C.-S.; Litasov, K. D.; Mao, H.-K.; Goncharov, A. F. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2013.10.1038/ncomms3446 17. Prescher, C.; Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 2015, 35, 223-230. 18. Pawley, G. EDINP, the edinburgh powder profile refinement program. J. Appl. Crystallogr. 1980, 13, 630-633. 19. Le Bail, A.; Duroy, H.; Fourquet, J. Ab-initio structure determination LiSbWO6 of by X-ray powder diffraction. Mater. Res. Bull. 1988, 23, 447-452. 20. Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544-549. 21. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169. 22. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50. 23. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758. 24. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953. 25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. 26. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704. 27. Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX-evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713-720. 28. Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 2010, 71, 271-298. 29. Lyakhov, A. O.; Oganov, A. R.; Valle, M. How to predict very large and complex crystal structures. Comput. Phys. Commun. 2010, 181, 1623-1632. 30. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237. 31. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172-1182. 32. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 134106. 33. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276. 34. Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsletter 2006, 7, 4-38. 35. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586. 36. Dickens, B.; Bowen, J. Refinement of the crystal structure of the aragonite phase of CaCO3. J. Res. Natl. Bur. Stand., Sect. A 1971, 75A, 27-32. 37. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. PVT equation of state of CaCO3 aragonite to 29 GPa and 1673K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91. 38. Stacey, F.; Davis, P. Physics of the Earth; Cambridge University Press: Cambridge, New York, Melbourne, 2008. 39. Syracuse, E. M.; van Keken, P. E.; Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 2010, 183, 73-90. 40. King, S. D.; Frost, D. J.; Rubie, D. C. Why cold slabs stagnate in the transition zone. Geology 2015, 43, 231-234. 41. Kirby, S. H.; Stein, S.; Okal, E. A.; Rubie, D. C. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 1996, 34, 261-306. 42. Bragg, W. The structure of aragonite. Proc. R. Soc. London, Ser. A 1924, 105, 16-39. 43. Blatov, V. A. Crystal structures of inorganic oxoacid salts perceived as cation array: a periodic-graph approach. In Inorganic 3D Structures; Springer, 2011; pp 31-66. 44. Manjón, F. J.; Errandonea, D. Pressure-induced structural phase transitions in materials and earth sciences. Phys. Status Solidi B 2009, 246, 9-31. 45. Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W.; Hanfland, M. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys. Chem. Miner. 2015, 42, 29-43.