Цитирование: | 1. Dasgupta, R.; Hirschmann, M. M. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 2010, 298, 1-13.
2. Sleep, N. H.; Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res.: Planets 2001, 106, 1373-1399.
3. Litasov, K. Physicochemical conditions for melting in the Earth's mantle containing a C-O-H fluid (from experimental data). Russ. Geol. Geophys. 2011, 52, 475-492.
4. Ono, S.; Kikegawa, T.; Ohishi, Y. High-pressure transition CaCO3. Am. Mineral. 2007, 92, 1246-1249.
5. Ono, S.; Kikegawa, T.; Ohishi, Y.; Tsuchiya, J. Post-aragonite phase transformation in CaCO3 at 40 GPa. Am. Mineral. 2005, 90, 667-671.
6. Santillán, J.; Williams, Q. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am. Mineral. 2004, 89, 1348-1352.
7. Palaich, S. E.; Heffern, R. A.; Hanfland, M.; Lausi, A.; Kavner, A.; Manning, C. E.; Merlini, M. High-pressure compressibility and thermal expansion of aragonite. Am. Mineral. 2016, 101, 1651-1658.
8. Merlini, M.; Hanfland, M.; Crichton, W. CaCO3-III and CaCO3- VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth's mantle. Earth Planet. Sci. Lett. 2012, 333-334, 265-271.
9. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 104101.
10. Koch-Müller, M.; Jahn, S.; Birkholz, N.; Ritter, E.; Schade, U. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys. Chem. Miner. 2016, 43, 545-561.
11. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103.
12. Oganov, A. R.; Ono, S.; Ma, Y.; Glass, C. W.; Garcia, A. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 2008, 273, 38-47.
13. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R.; Goncharov, A. F. Raman spectroscopy and x-ray diffraction of sp3CaCO3 at lower mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 104101.
14. Cerenius, Y.; Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 2000, 306, 26-29.
15. Prakapenka, V.; Kubo, A.; Kuznetsov, A.; Laskin, A.; Shkurikhin, O.; Dera, P.; Rivers, M.; Sutton, S. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Res. 2008, 28, 225-235.
16. Lobanov, S. S.; Chen, P.-N.; Chen, X.-J.; Zha, C.-S.; Litasov, K. D.; Mao, H.-K.; Goncharov, A. F. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2013.10.1038/ncomms3446
17. Prescher, C.; Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 2015, 35, 223-230.
18. Pawley, G. EDINP, the edinburgh powder profile refinement program. J. Appl. Crystallogr. 1980, 13, 630-633.
19. Le Bail, A.; Duroy, H.; Fourquet, J. Ab-initio structure determination LiSbWO6 of by X-ray powder diffraction. Mater. Res. Bull. 1988, 23, 447-452.
20. Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544-549.
21. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169.
22. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
23. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758.
24. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953.
25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
26. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704.
27. Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX-evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713-720.
28. Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 2010, 71, 271-298.
29. Lyakhov, A. O.; Oganov, A. R.; Valle, M. How to predict very large and complex crystal structures. Comput. Phys. Commun. 2010, 181, 1623-1632.
30. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237.
31. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172-1182.
32. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 134106.
33. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276.
34. Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsletter 2006, 7, 4-38.
35. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586.
36. Dickens, B.; Bowen, J. Refinement of the crystal structure of the aragonite phase of CaCO3. J. Res. Natl. Bur. Stand., Sect. A 1971, 75A, 27-32.
37. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. PVT equation of state of CaCO3 aragonite to 29 GPa and 1673K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91.
38. Stacey, F.; Davis, P. Physics of the Earth; Cambridge University Press: Cambridge, New York, Melbourne, 2008.
39. Syracuse, E. M.; van Keken, P. E.; Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 2010, 183, 73-90.
40. King, S. D.; Frost, D. J.; Rubie, D. C. Why cold slabs stagnate in the transition zone. Geology 2015, 43, 231-234.
41. Kirby, S. H.; Stein, S.; Okal, E. A.; Rubie, D. C. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 1996, 34, 261-306.
42. Bragg, W. The structure of aragonite. Proc. R. Soc. London, Ser. A 1924, 105, 16-39.
43. Blatov, V. A. Crystal structures of inorganic oxoacid salts perceived as cation array: a periodic-graph approach. In Inorganic 3D Structures; Springer, 2011; pp 31-66.
44. Manjón, F. J.; Errandonea, D. Pressure-induced structural phase transitions in materials and earth sciences. Phys. Status Solidi B 2009, 246, 9-31.
45. Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W.; Hanfland, M. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys. Chem. Miner. 2015, 42, 29-43.
|