Инд. авторы: Likhanov I.I., Santosh M.
Заглавие: Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: Implications for breakup of the Rodinia supercontinent
Библ. ссылка: Likhanov I.I., Santosh M. Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: Implications for breakup of the Rodinia supercontinent // Precambrian Research. - 2017. - Vol.300. - P.315-331. - ISSN 0301-9268.
Внешние системы: DOI: 10.1016/j.precamres.2017.08.019; РИНЦ: 32567439; WoS: 000412252600019;
Реферат: eng: The fold-and-thrust belt of Yenisey Ridge is a key to understand the Precambrian tectonic evolution of the Siberian Craton as well as crustal evolution in the Central Asian Orogenic Belt. Here we report the occurrence of felsic and mafic dyke swarms in the Yenisey Ridge providing evidence for rift-related magmatism. The dikes and sills occur in narrow linear zones along faults, and show bimodal composition with geochemical features indicating intraplate settings. Zircon SHRIMP U-Pb analyses constrain the timing of emplacement of the dykes as 797-792 Ma. The magmatic event at c.800 Ma along the western margin of the Siberian Craton and other continental blocks can be correlated with the onset of the breakup of the Neoproterozoic Rodinia supercontinent. Post-Grenville episodes of regional crustal evolution are correlated with the synchronous successions and similar style within the Valhalla orogen along the Arctic margin of Rodinia and supports the spatial proximity of Siberia and North Atlantic cratons (Laurentia, Baltica, Svalbard) at c.800 Ma, as proposed for the Neoproterozoic paleogeographic reconstructions for the Rodinia supercontinent and as robustly constrained from large igneous province (LIP) record.
Ключевые слова: Intraplate tectonics; Geochemistry; Zircon U-Pb SHRIMP II dating; Ar-40/Ar-39 geochronology; U-PB GEOCHRONOLOGY; A-TYPE GRANITES; EASTERN SIBERIA; TECTONIC EVENTS; PALEOMAGNETIC DATA; COLLISIONAL METAMORPHISM; PRECAMBRIAN FE-RICH; IGNEOUS PROVINCES LIPS; TRANSANGARIAN YENISEI RIDGE; SNOWBALL EARTH; Neoproterozoic dike swarms;
Издано: 2017
Физ. характеристика: с.315-331
Цитирование: 1. Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80, 549-559. 2. Bhadra, S., Bhattacharya, A., 2007. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist 92, 491-502. 3. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology 200, 155-170. 4. Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology 104, 208-224. 5. Bogdanova, S.V., Pisarevsky, S.A., Li, Z.X., 2009. Assembly and breakup of Rodinia (Some results of IGCP project 440). Stratigraphy and Geological Correlation 17, 259-274. 6. Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Rare earth element geochemistry (Ed. Henderson P.). Elsevier, Amsterdam, 63-114. 7. Brown, M., 2007 Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49, 193-234. 8. Burg, J.P., Gerya, T.V., 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology 23, 75-95. 9. Burg, J.-P., Schmalholz, S.M., 2008. Viscous heating allows thrusting to overcome crustal scale buckling: numerical investigation with application to the Himalayan syntaxes. Earth Planet. Sci. Let. 274, 189-203. 10. Cawood, P.A., Nemchin, A.A., Strachan, R.A., Kinny, P.D., Loewy, S., 2004. Laurentian provenance and an intracratonic tectonic setting for the upper Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions. Journal of the Geological Society of London161, 861-874. 11. Cawood, P.A., Strachan, R., Cutts, K., Kinny, P.D., Hand, M., Pisarevsky S., 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38(2), 99-102. 12. Cawood, P.A., Strachan, R.A., Pisarevsky S.A., Gladkochub, D.P., Murphy, J.B., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters 449, 118-126. 13. Condie, K.C., Rosen, O.M., 1994. Laurentia-Siberia connection revised. Geology 22, 168-170. 14. Cox, G.M., Halverson, G.P., Stevenson, R.K., Vokaty, M., Poirier, A., Kunzmann, M., Li, Z.-X., Denyszyn, S.W., Strauss, J.V., Macdonald F.A., 2016. Continental flood basalt weathering as a trigger for Neoproterozoic snowball earth. Earth Planet. Sci. Lett. 446, 89-99. 15. Dale, J., Holland, T., Powell, R., 2000. Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology 140, 353-362. 16. Dall'Agnol, R., Rämö, O.T., Magalhaes, M.S., Macambira, M.J.B., 1999. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites. Lithos 46, 431-462. 17. Dalziel, I.W.D., 1997. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculations. Geol. Soc. Am. Bull. 109, 16-42. 18. Dalziel, I.W.D., Mosher, S., Gahagan, L.M., 2000. Laurentia-Kalahari Collision and the Assembly of Rodinia. Journal of Geology 108, 499-513. 19. Didenko, A. N., Vodovozov, V. Y., Peskov, A. Y., Guryanov, V. A. & Kosynkin, A. V., 2015. Paleomagnetism of the Ulkan massif (SE Siberian platform) and the apparent polar wander path for Siberia in late Paleoproterozoic_early Mesoproterozoic times. Precambr. Res. 259, 58-77. 20. Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 20, 641-644. 21. Egorov, A.S., 2004. Deep-seated structure and geodynamics of the lithosphere of Northern Eurasia: evidence from geological-geophysical modeling along the geotraverses of Russia. VSEGEI Press, St. Petersburg, p. 199 (in Russian). 22. Ernst, R.E. 2014. Large Igneous Provinces. Cambridge University Press (p. 653). 23. Ernst, R.E., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47, 695-739. 24. Ernst, R.E., Wingate, M.T.D., Buchan, K.L., Li, Z.H., 2008. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research 160, 159-178. 25. Ernst, R. E. Ernst, R.E., Okrugin, A.V., Veselovskiy, R.V., Kamo, S.L., Hamilton, M.A., Pavlov, V., Söderlund, U., Chamberlain, K.R., Rogers, C., 2016а. The 1501Ma Kuonamka Large Igneous Province of northern Siberia: U_Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russ. Geol. Geophys. 57, 657-675 (2016). 26. Ernst, R.E., Hamilton, M.A., Soderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V., Kolotilina, T., Mekhonoshin, A.S., Bleeker, W., LeCheminant, A.N., Buchan, K.L., Chamberlain, K.R., Didenko, A.M., 2016b. Long-lived connection berween southern Siberia and northern Lavrentia in the Proterozoic. Nature Geoscience 9, 464-469. 27. Ernst, R.E., Youbi, N., 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Paleogeography, Paleoclimatology, Paleoecology 578, 30-52. 28. Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. In: Murphy, J.B., Keppie, J.D., Hynes, A. (Eds.), Ancient Orogens and Modern Analogues, 327. Geological Society of London Special Publication, pp. 371-404. 29. Evans, D.A.D., and Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443-446. 30. Gallet, Y., Pavlov, V.E., Semikhatov, M.A., Petrov, P.Yu., 2000. Late Mesoproterozoic magnetostratigraphic results from Siberia: paleogeographic implications and magnetic field behaviour. J. Geophys. Res. 105, 16481-16499. 31. Frost, B.R., Avchenko, O.V., Chamberlain, K.R., and Frost, C.D., 1998. Evidence for extensive Proterozoic remobilization of the Aldan Shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Research 89, 1-23. 32. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033-2048. 33. Gerya, T.V., 2014. Precambrian geodynamics: Concepts and models. Gondwana Research 25, 442-463. 34. Gladkochub, D.P., Donskaya, T. V., Mazukabzov, A. M., Stanevich, E. M., Sklyarov, E.V., Ponomarchuk, V.A., 2007. Signature of Precambrian extension events in the southern Siberian Craton. Russian Geology and Geophysics 48, 17-31. 35. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Ernst, R.E., Wingate, M.T.D., Söderlund, U., Mazukabzov, A.M., Sklyarov, E.V., Hamilton, M.A., and Hanes, J.A., 2010. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research 183, 660-668. 36. Gladkochub, D.P., Donskaya, T. V., Ernst, R., Mazukabzov, A.M., Sklyarov, E.V., Pisarevsky, S.A., Wingate, M., Soderlund, U., 2012. Proterozoic basic magmatism of the Siberian Craton: main stages and their geodynamic interpretation. Geotectonics 20 (4), 273-284. 37. Johansson, Å., 2014. From Rodinia to Gondwana with the ‘SAMBA' model-A distant view from Baltica towards Amazonia and beyond. Precambrian Research 244, 226-235. 38. Johnson, M.R.W., Harley S.L., 2012. Orogenesis: the making of mountains. Cambridge University Press, New York, p. 388. 39. Harlan, S.S., Wingate, M.T.D., LeCheminant, A.N., Premo, W.R., 2003. Gunbarrel mafic magmatic event: a key 780Ma time marker for Rodinia plate reconstructions. Geology 31, 1053-1056. 40. Harlan, S.S., Geissman, J.W., Snee, L.W., 2008. Paleomagnetism of Proterozoic mafic dikes from the Tobacco Root Mountains, southwest Montana. Precambrian Research 163, 239-264. 41. Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geological Society of London, Special Publication 19, 67-81. 42. Hodges, K.V., 2004. Geochronology and Thermochronology in Orogenic System. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier, Oxford, UK, pp. 263-292. 43. Hodges, K.V., McKenna, L.W., 1987. Realistic propagation of uncertainties in geologic thermobarometry. American Mineralogist 72, 671-680. 44. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science 281, 1342-1346. 45. Holdaway, M. J., Dutrow, B. L., Hinton, R.W., 1988. Devonian and Carboniferous Metamorphism in West-Central Maine: The Muscovite-Almandine Geobarometer and the Staurolite Problem Revisited. American Mineralogist 73, 20-47. 46. Holland, T. J. B., Blundy, J. D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433-447. 47. Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72, 231-239. 48. Kachevsky, L.K., Kachevskaya, G.I., Storozhenko, A.A., Zuyev, V.K., Diner, A.E., Vasilyev, N.F., 1994. On recognition of the Archean metamorphic complexes in the Transangarian part of the Yenisey Ridge. Otechestvennaya Geologiya 11-12, 45-49 (in Russian). 49. Kachevsky, L.K., Kachevskaya, G.I., Grabovskaya, J.M., 1998. Geological Map of Yenisei Ridge, Scale 1:500000. Krasoyarskgeols'emka, Krasnoyarsk,, 6 sheets (in Russian). 50. Kheraskova, T.N., Kaplan, S.A., Galuev, V.I., 2009. Structure of the Siberian platform and its western margin in the Riphean-Early Paleozoic. Geotectonics 43, 115-132. 51. Kirkland, C.L., Daly, J.S., Whitehouse, M.J., 2006. Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norway -Constraining pre-Scandian deformation in the Kalak Nappe Complex. Precambrian Research 145, 24-52. 52. Kohn, M.J., Spear, F.S., 1991. Error propagation for barometers. American Mineralogist 76, 138-147. 53. Kontorovich, A.E., Khomenko, A.V., Burshtein, L.M., Likhanov, I.I., Pavlov, A.L., Staroseltsev, V.S., Ten A.A., 1997. Intense basic magmatism in the Tunguska petroleum basin, eastern Siberia, Russia. Petroleum Geoscience 3, 359-369. 54. Koptev, A., Burov, E., Calais, E., Leroy, S, Gerya, T., Guillou-Frottier, L., Cloetingh, S., 2016. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift. Geoscience Frontiers 7, 221-236. 55. Korobeinikov, S.N., Polyansky, O.P., Likhanov, I.I., Sverdlova, V.G., Reverdatto, V.V., 2006. Mathematical modeling of overthrusting as a cause of andalusite-kyanite metamorphic zoning in the Yenisey Ridge. Doklady Earth Sciences 408, 652-657. 56. Kozlov, P.S., Likhanov, I.I., Reverdatto, V.V., Zinov'ev S.V., 2012. Tectonometamorphic evolution of the Garevka polymetamorphic complex (Yenisei Ridge). Russian Geology and Geophysics 53, 1133-1149. 57. Krylov, A.A., Likhanov, I.I. 2017. Geochemistry, ages of protolith and metamorphism of high-pressure fault tectonites of the Yenisei Ridge: application to the Paleoasian ocean formation. Proceedings of Voronezh State University. Series: Geology 1, 49-60 (in Russian with English abstract). 58. Kuzmichev, A.B., Sklyarov E.V., 2016. The Precambrian of Transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogeny, or reworked margin of the Siberian craton. Journal of Asian Earth Sciences 115, 419-441. 59. Kuzmichev, A.B., Danukalova, M.K., 2016. Faddey "terrane" and Stanovoy ophiolite belt of Taymyr: problems of geological interpretation. In: Sklyarov, E.V. (Ed.), Proceedings of Meeting "Geodynamic evolution of the Central Asian Orogenic Belt lithosphere (from ocean to continent) ". V.14. Irkutsk, IZK SO RAN, 164-166 (in Russian). 60. Kuznetsov, N.B., Shatsillo, A.V., Rud'ko, S.V., 2016. The character of boundaries (shear/overthrusts?) between the East Angarian and Central Angarian Precambrian blocks in the modern structure of Transangaria Yenisei Ridge. In: Sklyarov, E.V. (Ed.), Proceedings of Meeting "Geodynamic evolution of the Central Asian Orogenic Belt lithosphere (from ocean to continent)". V.14. Irkutsk, IZK SO RAN, 143-147 (in Russian). 61. Li, X.H., Li, Z.H., Zhou, H., Liu, Y., Kinny, P.D., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kandigan Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research 113, 135-154. 62. Li, Z.-H., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladcochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179-210. 63. Legend of the Yenisei Series of the State Geological Map of the Russian Federation on a Scale of 1:200000, 2000, 2nd ed. Ed. by Kachevsky, L.K. Krasnoyarskgeologiya, Krasnoyarsk (in Russian). 64. Likhanov, I.I., Reverdatto, V.V., 2007. Provenance of Precambrian Fe-and Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures. Acta Geologica Sinica-English Edition 81, 409-423. 65. Likhanov, I.I., Reverdatto, V.V., 2008. Precambrian Fe-and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism. International Geology Review 50, 597-623. 66. Likhanov, I.I., Reverdatto, V.V., 2011a. Lower Proterozoic metapelites in the northern part of the Yenisei Ridge: nature, age of protolith, and mass balance analysis during collisional metamorphism. Geochemistry International 49, 224-252. 67. Likhanov, I.I., Reverdatto, V.V., 2011b. Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisey Ridge, Siberia. International Geology Review 53, 802-845. 68. Likhanov, I.I., Reverdatto, V.V., 2014a. Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge. Geochemistry International 52, 1-21. 69. Likhanov, I.I., Reverdatto, V.V., 2014b. P-T-t сonstraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications. Russian Geology and Geophysics 55, 299-322. 70. Likhanov, I.I., Reverdatto, V.V., 2015. The oldest metabasites of the North Yenisey Ridge. Doklady Earth Sciences 460, 113-117. 71. Likhanov, I.I., Reverdatto, V.V., Memmi, I., 1994. Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia). European Journal of Mineralogy 6, 133-144. 72. Likhanov, I.I., Reverdatto, V.V., Sheplev, V.S., Verschinin, A.E., Kozlov, P.S., 2001. Contact metamorphism of Fe-and Al-rich graphitic metapelites in the Transangarian region of the Yenisey Ridge, eastern Siberia, Russia. Lithos 58, 55-80. 73. Likhanov, I. I., Polyansky, O. P., Reverdatto, V. V., Memmi, I., 2004. Evidence from Fe-and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia. Journal of Metamorphic Geology 22, 743-762. 74. Likhanov, I.I., Kozlov, P.S., Popov, N.V., Reverdatto, V.V., Vershinin, A.E., 2006. Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge. Doklady Earth Sciences 411, 1313-1317. 75. Likhanov, I.I., Kozlov, P.S., Polyansky, O.P., Popov, N.V., Reverdatto, V.V., Travin, A.V., Verschinin, A.E., 2007. Neoproterozoic age of collisional metamorphism in the Transangarian Yenisey Ridge: 40Ar-39Ar evidence. Doklady Earth Sciences 413, 234-237. 76. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Popov, N.V., 2009. Kyanite-sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge. Russian Geology and Geophysics 50, 1034-1051. 77. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., 2011. Сollision-related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate. Russian Geology and Geophysics 52, 1256-1269. 78. Likhanov, I.I., Popov, N.V., Nozhkin, A.D., 2012a. The oldest granitoids in the Transangarian part of the Yenisey Ridge: U-Pb and Sm-Nd data and geodynamic settings. Geochemistry International 50, 869-877. 79. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., 2012b. U-Pb and 40Ar-39Ar evidence for Grenvillian activity in the Yenisey Ridge during formation of the Teya metamorphic complex. Geochemistry International 50, 551-557. 80. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., 2013a. The first data on Mesoproterozoic tectonic events in the geological history of the South Yenisei Ridge. Doklady Earth Sciences 453, 1274-1277. 81. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., Sukhorukov, V.P., 2013b. Three metamorphic events in Precambrian P-T-t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites. Petrology 21, 561-578. 82. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinov'ev, S.V., 2013c. The Neoproterozoic Trans-Angara dike belt, Yenisei Range, as an indicator of extension and breakup of Rodinia. Doklady Earth Sciences 450, 613-617. 83. Likhanov, I.I., Reverdatto, V.V., Popov, N.V., 2013d. New data on Late Riphean intraplate granitoid magmatism in the Transangarian Yenisei Ridge. Doklady Earth Sciences 453(1), 1100-1105. 84. Likhanov, I.I., Reverdatto, V.V., Zinov'ev, S.V., Nozhkin, A.D., 2013e. Age of blastomylonites of the Yenisei regional shear zone as evidence of the Vendian accretionary-collision events at the western margin of the Siberian Сraton. Doklady Earth Sciences 450, 489-493. 85. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Kozlov, P.S., 2014a. Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton. Geotectonics 48, 371-389. 86. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., Nozhkin A.D., 2014b. Late Proterozoic A-type granites of Chernorechenskii massif in the Yenisei Ridge: new geochemical and geochronological data. Doklady Earth Sciences 455(1), 279-283. 87. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinoviev, S.V., Khiller, V.V., 2015a. P-T-t reconstructions of South Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to supercontinental cycles. Russian Geology and Geophysics 56(6), 805-824. 88. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinoviev, S.V., Khiller, V.V., 2015b. Evidence of the Valhalla tectonic events at the western margin of the Siberian Craton. Doklady Earth Sciences 462(1), 458-462. 89. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., Sukhorukov, V.P., 2015c. P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions. Journal of Asian Earth Sciences 113, 391-410. 90. Likhanov, I.I., Reverdatto, V.V., 2016. Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge. Geochemistry International 54, 127-148. 91. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., 2017. Early stages of the Paleoasian ocean evolution at western margin of the Siberian Сraton on evidence derived from geochemical and geochronological data from the Yenisei Ridge. Doklady Earth Sciences 476, 942-948. 92. Ludwig, K.R., 1999. User's manual for Isoplot/Ex, Version 2.10, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, V.1, 46 p. 93. Ludwig, K.R., 2000. SQUID 1.00, A User's Manual. Berkeley Geochronology Center Special Publication, V.2, 19 p. 94. Maruyama, S., Santosh, M., 2008. Snowball earth to Cambrian explosion. Gondwana Research 14, 1-4. 95. Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Research 11, 7-37. 96. Meschide, M.A., 1986. A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb-Zr-Y diagram. Chemical Geology 56, 207-218. 97. Metelkin, D.V., Vernikovsky, V.A., Kazansky, A.Y., 2007. Neoproterozoic evolution of Rodinia: constraints from new paleomagnetic data on the western margin of the Siberian craton. Russian Geology and Geophysics 48, 32-45. 98. Metelkin, D.V., Vernikovsky, V.A., and Kazansky, A.Y., 2012. Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: Paleomagnetic record and reconstructions. Russian Geology and Geophysics 53, 791-794. 99. Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks. Longman Group Ltd., Essex, 266 p. 100. Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature 230, 42-43. 101. Nozhkin, A.D., Turkina, O.M., Sovetov, Yu.K., Travin, A.V., 2007. The Vendian accretionary event in the southwestern margin of the Siberian Craton. Doklady Earth Sciences 415 (6), 869-873. 102. Nozhkin, A.D., Turkina, O.M., Bayanova, T.B., Berezhnaya, N.G., Larionov, A.N., Postnikov, A.A., Travin, A.V., Ernst, R.E., 2008. Neoproterozoic rift and within-plate magmatism in the Yenisey Ridge: implications for the breakup of Rodinia. Russian Geology and Geophysics 49, 503-519. 103. Nozhkin, A.D., Borisenko, A.S., Nevolko, P.A., 2011. Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge. Russian Geology and Geophysics 52, 124-143. 104. Nozhkin, A.D., Kachevsky, L.K., Dmitrieva, N.V., 2012. Late Neoproterozoic metarhyolite-basalt association of the Glushikha Trough (Yenisei Ridge): new data on the petrogeochemical composition, age, and conditions of formation. Doklady Earth Sciences 445 (1), 910-915. 105. Nozhkin, A.D., Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., 2013. Grenville orogeny, Late Neoproterozoic rift-related and intraplate magmatism at the western margin of the Siberian craton as geological evidence for the assembly and breakup of Rodinia. In: Veselovskiy, R., Lubnina, N., (Eds.), Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium. Moscow, PERO Press, p. 55. 106. Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., Dmitrieva, N.V., 2016. Late Paleoproterozoic volcanic associations in the southwestern Siberian craton (Angara-Kan block). Russian Geology and Geophysics 57(2), 247-264. 107. Oliver, G.J.H., Chen, F., Buchwaldt, R., and Henger, E., 2000. Fast tectonometamorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology 28, 459-462. 108. Pavlov, V.E., Gallet, Y., Petrov, P.Yu., Zhuravlev, D.Z., Shatsillo, A.V., 2002. Uy series and late Riphean sills of the Uchur-Maya area: isotopic and palaeomagnetic data and the problem of the Rodinia supercontinent. Geotectonics 36, 278-292. 109. Pearce, J.A., 1996. Sources and settings of granitic rocks. Episodes 19(4), 120-125. 110. Petrini, K., Podladchikov, Yu., 2000. Lithospheric pressure-depth relationship in compressive regions of thickened crust. J. Metamorphic Geol. 18, 67-77. 111. Pettersson, C.H., Tebenkov, A.M., Larionov, A.N., Andresen, A., Pease, V., 2009. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway:implications for regional correlations in the Arctic Caledonides. Journal of the Geological Society of London 166, 147-158. 112. Pirajno, F., 2015. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research 27, 1181-1216., 113. Pisarevsky, S. A., Natapov, L.M., Donskaya, T.V., Gladkochub, D.P., Vernikovsky, V.A., 2008. Proterozoic Siberia: a promontory of Rodinia. Precambrian Research 160, 66-76. 114. Pisarevsky, S. A., Elming, S.-Å., Pesonen, L. J., Li, Z.-X., 2014. Mesoproterozoic paleogeography: supercontinent and beyond. Precambr. Res. 244, 207-225. 115. Popov, N.V., Likhanov, I.I., Nozhkin, A.D., 2010. Mesoproterozoic granitoid magmatism in the Trans-Angara Segment of the Yenisei Range: U-Pb evidence. Doklady Earth Sciences 431, 418-423. 116. Priyatkina, N., Khudoley, A.K., Collins, W.J., Kuznetsov, N.B., Huang, H.-Q., 2016. Detrital zircon record of Meso-and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: Characterizing buried crust of the basement. Precambrian Research 285, 21-38. 117. Rainbird, R.H., Stern, R.A., Khudoley, A.K., Kropachev, A.P., Heaman, L.M., and Sukhorukov, V.I., 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth and Planetary Science Letters 164, 409-420. 118. Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., Kolobov, V.Yu., 2017. Nature and models of metamorphism. Publishing House SB RAS, Novosibirsk, 331 p. (in Russian). 119. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D., 2008. The Grenvillian and Pan-African orogens: world's largest orogenies through geological time, and their implications on the origin of superplume. Gondwana Research 14, 51-72. 120. Sal'nikov, А.S., 2009. Seismological structure of the Earth's crust in the platform and folded areas of Siberia based on regional refraction seismic data. Siberian Research Institute of Geology, Geophysics and Mineral Resources Press, Novosibirsk, p. 132 (in Russian). 121. Santosh, M., Maruyama, S., Yamamoto, S., 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15, 324-341. 122. Schmalholz, S.M., Podladchikov, Y.Y., 2013. Tectonic overpressure in weak crustal-scale shear zones and implications for exhumation of high-pressure rocks. Geophysical Researh Letters 40, 1984-1988. 123. Schmalholz, S.M., Podladchikov, Y.Y., 2014. Metamorphism under stress: The problem of relating minerals to depth. Geology 42, 733-734. 124. Sears, J.W., 2012. Transforming Siberia along the Laurussian margin. Geology 40, 535-538. 125. Sears, J.W., Price, R.A., 2000. New look at the Siberian connection: No SWEAT. Geology 28, 423-426. 126. Semikhatov, M.A., 1962. Riphean and Lower Cambrian in the Yenisei Ridge. AN SSSR, Moscow (in Russian). 127. Sizova, E.V., Gerya, T.V., Brown, M., 2014. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research 25, 522-545. 128. Sklyarov, E.V., 2006. Mechanisms of exhumation of the metamorphic complexes. Russian Geology and Geophysics 47, 71-75. 129. Smethurst, M.A., Khramov, A.N., and Torsvik, T.H., 1998. The Neoproterozoic and Palaeozoic palaeomagnetic data for the Siberian Platform: From Rodinia to Pangea. Earth-Science Reviews 43, 1-24. 130. Stewart, K., Rogers, N., 1996. Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth and Planetary Science Letters 139, 195-211. 131. Steinberg, B., Torsvik, T.H., 2012. A geodynamic model of plumes from the margin of Large Low Shear Velocity Provinces. Geochemistry Geophysics Geosystems 13, 1-17. 132. Strachan, R.A., Nutman, A.P., Friderichsen, J.D., 1995. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society of London 152, 779-784. 133. Strachan, R.A., Smith, M., Harris, A.L., Fettes, D.J., 2002. The Northern Highland and Grampian terranes. In: Trewin, N.H. (Ed.), Geology of Scotland, 4th edn. London, Geological Society, pp. 81-147. 134. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London, Special Publication 42, 313-345. 135. Torsvik, T.H., 2003. The Rodinia Jigsaw Puzzle. Science 300, 1379-1381. 136. Torsvik, T.H., Smethurst, M.A., Meert, J.G., VanderVoo, R., McKerrow, W.S., Brasier, M.D., Sturt, B.A., Walderhaug, H.J., 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic-a tale of Baltica and Laurentia. Earth-Science Reviews 40, 229-258. 137. Vance, D., Strachan, R.A., Jones, K.A., 1998. Extensional versus compressional settings for metamorphism: garnet chronometry and pressure-temperature-time histories in the Moine Supergroup, northwest Scotland. Geology 26, 927-930. 138. Vernikovsky, V.A., Vernikovskaya, A.E., Kotov, A.B., Sal'nikova, E.B., Kovach, V.P., 2003. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics 375, 147-168. 139. Vernikovsky, V.A., Kazansky, A.Yu., Matushkin, N.Yu., Metelkin, D.V., Sovetov, J.K., 2009. The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: geological, structural, sedimentological, geochronological, and paleomagnetic data Russian Geology and Geophysics 50, 380-393. 140. Vernikovsky, V.A., Vernikovskaya, A.E., Polyansky, O.P., Laevsky, Yu.M., Matushkin, N.Yu., Voronin, K.V., 2011. A tectonothermal model for the formation of an orogen at the post-collisional stage (by the example of the Yenisei Ridge, Eastern Siberia). Russian Geology and Geophysics 52, 32-50. 141. Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295-304. 142. Whalen, J.B., Currie, K.L., Chappel, B.W., 1987. A-type granites: geochemical characteristics and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419. 143. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185-187. 144. Williams, I.S., 1998. U-Th-Pb geochronology by ion-microprobe. In: McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.). Reviews in Economic Geology, v. 7, pp.1-35. 145. Windley, B.F., 1998. The evolving continents. New York: Wiley & Sons Inc, 526 p. 146. Wolfram, S., 2003. The Mathematica Book, 5th ed. Wolfram Media Inc., Champaign, IL, p. 544. 147. Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 11-30. 148. Xiao, W., Kusky, T., Safonova, I., Seltmann, R., Sun, M., 2015. Tectonics of the Central Asian Orogenic Belt and its Pacific analogues. Journal of Asian Earth Sciences 113, 1-6. 149. Yarmolyuk, V. V., Kovalenko, V. I., 2001. Late Riphean breakup between Siberia and Laurentia: evidence from intraplate magmatism. Doklady Earth Sciences 379 (5), 525-528. 150. Yarmolyuk, V. V., Kovalenko, V. I., Sal'nikova, E. B., Kozakov I. K., Kotov A. B., Kovach V. P., Vladykin N. V., Yakovleva S. Z., 2005. U-Pb age of syn-and postmetamorphic granitoids of south Mongolia: evidence for the presence of Grenvillides in the Central Asian Fold belt. Doklady Earth Sciences 404, 986-990. 151. Yarmolyuk, V. V., Kovalenko, V. I., Anisimova, I.V., Sal'nikova, E.B., Kovach, V.P., Kozakov, I.K., Kozlovsky, A.M., Kudryashova, E.A., Kotov, A.B., Plotkina, Yu.V., Terent'eva, L.B., Yakovleva S.Z., 2008. Late Riphean alkali granites of the Zabhan Microcontinent: evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold Belt. Doklady. Earth Sciences 420 (4), 583-588. 152. Yu, J.-H., O'Reilly, S.Y., Wang, L., Griffin, W.L., Zhang, M., Wang, R., Jianga, S., Shua, L., 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research 164, 1-15. 153. Zhao, J.-X., McCulloch, M.T., Korsch, R.J., 1994. Characterization of a plume-related ~800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth and Planetary Science Letters 121, 349-367. 154. Zinoviev, S.V., Chikov, B.M., 2010. The Kedrovyi-Butachikha dynamic metamorphic zone (Rudny Altai): a tectonic model. Russian Geology and Geophysics 51, 794-800.