Инд. авторы: | Беднякова А.Е., Федотенко Т.М. |
Заглавие: | Моделирование переноса шумов в когерентных волоконно-оптических линиях связи с распределенным рамановским усилением |
Библ. ссылка: | Беднякова А.Е., Федотенко Т.М. Моделирование переноса шумов в когерентных волоконно-оптических линиях связи с распределенным рамановским усилением // Вычислительные технологии. - 2017. - Т.22. - № 6. - С.12-22. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 32248588; |
Реферат: | rus: Выполнено исследование процесса переноса шумов из накачки в сигнал в распределенных рамановских усилителях. На основе нелинейного уравнения Шрёдингера разработана численная модель, учитывающая такие эффекты в волоконном световоде, как дисперсия, керровская нелинейность и вынужденное комбинационное рассеяние. Данная модель позволяет исследовать влияние различных шумов, в том числе шума источника накачки, на фазово-модулированный сигнал, распространяющийся в когерентных волоконных линиях связи с распределенным рамановским усилением. Результаты моделирования качественно согласуются с результатами натурных экспериментов. eng: The paper addresses an investigation of RIN transfer from pump to signal in distributed Raman amplifiers using the methods of numerical modelling. The process of RIN transfer was investigated by other authors both numerically and analytically. However, the vast majority of models are based on power balance equations derived in quasimonochromatic approximation. These models do not take into account the influence of nonlinear and dispersive effects on a signal in a long fiber and cannot be used to describe phase-modulated signal evolution in coherent optical communication links. In this work a numerical model based on the nonlinear Schr¨odinger equation was implemented, which enables study of phase-modulated signal propagation in Raman amplifier under influence of dispersion, nonlinearity and different noise sources including pump noise and amplified spontaneous emission (ASE). Using the proposed model we studied signal degradation in real coherent communication link with distributed Raman amplification and bi-directional pumping. The results of the numerical simulations are in a good agreement with the experiment. Numerical optimization of pump noise was performed. It demonstrated that the decrease of low-frequency component of pump noise below 35dB/Hz leads to the decrease of pump-to-signal RIN transfer to the negligibly low level, achievable only in the amplifier with counter-propagating pump. |
Ключевые слова: | schrodinger equation; rin; Relative intensity noise; Raman amplifier; coherent optical communication links; нелинейная волоконная оптика; уравнение Шрёдингера; относительная интенсивность шума; ВКР-усилитель; рамановский усилитель; когерентные волоконно-оптические линии связи; Nonlinear fiber optics; |
Издано: | 2017 |
Физ. характеристика: | с.12-22 |
Цитирование: | 1. Islam, M.N. Raman amplifiers for telecommunications 1: Physical principles // Springer Ser. in Optical Sci. 2004. Vol. 90(1). 300 p. DOI:10.1007/b97299. 2. Rizzelli, G., Iqbal, M.A., Gallazzi, F., Rosa, P., Tan, M., Ania-Castanon, J.D., Krzczanowicz, L., Corredera, P., Phillips, I., Forysiak, W., Harper, P. Impact of input FBG reflectivity and forward pump power on RIN transfer in ultralong Raman laser amplifiers // Optics Express. 2016. Vol. 24. P. 29170-29175. 3. Ania-Castanon, J.D., Karalekas, V., Harper, P., Turitsyn, S.K. Simultaneous spatial and spectral transparency in ultralong fiber // Phys. Review Lett. 2008. Vol. 101. P. 123903. 4. Ellingham, T.J., Ania-Castanon, J.D., Ibbotson, R., Chen, X., Zhang, L., Turitsyn, S.K. Quasi-lossless optical links for broad-band transmission and data processing // Photon. Technol. Lett. 2006. Vol. 18, No. 1. P. 268-270. 5. Ania-Castanon, J.D., Ellingham, T.J., Ibbotson, R., Chen, X., Zhang, L., Turitsyn, S.K. Ultralong Raman fiber lasers as virtually lossless optical media // Phys. Review Lett. 2006. Vol. 96. P. 023902. 6. Bednyakova, A., Fedoruk, M., Harper, P., Turitsyn, S. Hybrid gain-flattened and reduced power excursion scheme for distributed Raman amplification // Optics Express. 2013. Vol. 21, No. 24. P. 29140-29144. 7. Bednyakova, A.E., Fedoruk, M.P. Spatially cascaded cavities for power saving distributed Raman amplification // Optics Commun. 2012. Vol. 291. P. 274-278. 8. Perlin, V.E., Winful, H.G. On trade-off between noise and nonlinearity in WDM systems with Raman amplification // Proc. of Optical Fiber Commun. Conf. and Exhibit, Los Angeles, CA, USA, 2012 (OFC-2012). P. 178-180. 9. Alcon-Camas, M., Ania-Castanon, J.D. RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers // Optics Express. 2010. Vol. 18. P. 23569-23575. 10. Fludger, C.R.S., Handerek, V., Mear, R.J. Pump to signal RIN transfer in Raman fiber amplifiers // J. Lightwave Technol. 2001. Vol. 19. P. 1140. 11. Krause, M., Cierullies, S., Renner, H., Brinkmeyer, E. Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact // Optics Commun. 2006. Vol. 260, No. 2. P. 656-661. 12. Nuno, J., Ania-Castanon, J.D. RIN transfer in second-order Raman amplification with centrally-pumped random distributed feedback lasers // Intern. J. of Modern Phys. B. 2014. Vol. 28. P. 1442005. 13. Tan, M., Dvoyrin, V., Iqbal, M.A., Turitsyn, S.K., Harper, P. Evaluation of long-haul coherent transmission performance using low RIN forward Raman pump // Asia Commun. and Photonics Conf., Wuhan, China, 2016. OSA Technical Digest (Opt. Soc. of America, 2016). Paper AF3D.2. 14. Dvoyrin, V., Tan, M., Zlenko, A., Mashinsky, V., Melkumov, M., Dianov, E., Harper, P., Turitsyn, S.K. Bi-doped fiber laser for telecom applications // Conf. on Lasers and Electro-Optics, San Jose, CA, USA, 2016. OSA Technical Digest (Opt. Soc. of America, 2016). Paper STu1F.4. 15. Churkin, D.V., Smirnov, S.V., Podivilov, E.V. Statistical properties of partially coherent cw fiber lasers // Optics Lett. 2010. Vol. 35, No. 19. P. 3288-3290. 16. Namiki, S., Emori, Y. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes // IEEE J. Selected Topics Quantum Electron. 2001. Vol. 7, No. 1. P. 3-16. |