Инд. авторы: Ryazanova A.A., Okladnikov I.G., Gordov E.P.
Заглавие: Integration of modern statistical tools for the analysis of climate extremes into the web-GIS "CLIMATE"
Библ. ссылка: Ryazanova A.A., Okladnikov I.G., Gordov E.P. Integration of modern statistical tools for the analysis of climate extremes into the web-GIS "CLIMATE" // IOP Conference Series: Earth and Environmental Science. - 2017. - Vol.96. - Iss. 1. - Art.012014. - ISSN 1755-1307. - EISSN 1755-1315.
Внешние системы: DOI: 10.1088/1755-1315/96/1/012014; РИНЦ: 35492455; SCOPUS: 2-s2.0-85038076829; WoS: 000426729700014;
Реферат: eng: The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called 'CLIMATE' to include a dedicated statistical package developed in the R language. The web-GIS 'CLIMATE' is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS 'CLIMATE' can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet. © Published under licence by IOP Publishing Ltd.
Ключевые слова: Temperature extremes; Structural connections; Statistics of extremes; Statistical packages; Quantile regression; Impact on the environment; Environmental characteristic; Statistical mechanics; Geographical regions; Environmental technology; Environmental engineering; Digital storage; Climate change; Analysis of various; Geographic information systems;
Издано: 2017
Физ. характеристика: 012014
Конференция: Название: 8th International Conference on Computational Information Technologies for Environmental Sciences
Аббревиатура: CITES 2017
Город: Zvenigorod
Страна: Russia
Даты проведения: 2017-09-04 - 2017-09-07
Цитирование: 1. Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M 2013 Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press and NY, USA) 1535 2. Friederichs P 2007 An Introduction to Extreme Value Theory (Bonn: Meteorological Institute University of Bonn, COPS, Summer School) 3. Beirlant J, Goegebeur Y, Segers H and Teugels J 2004 Statistics of Extremes: Theory and Applications (Wiley Series in Probability and Statistics) 4. Embrechts P, Kluppelberger C and Mikosch T 1997 Modelling Extremal Events for Insurance and Fincance (Berlin: Springer) 5. Koenker R and Basset 1978 Regression quantiles Econometrica 46 33-50 6. Nelsen R 2006 An Introduction to Copulas 2 (New York: Springer) 7. Gordov E P, Okladnikov I G, Titov A G, Bogomolov V Yu, Shulgina T M and Genina E Yu 2012 Geo-information system for investigation of regional climatic changes and first results obtained Atmos. Ocean. Opt. 25 137-43 8. Gordov E P, Shiklomanov A, Okladnikov I G, Prusevich A and Titov A G 2016 Development of Distributed Research Center for analysis of regional climatic and environmental changes IOP Conf. Series: Earth and Environmental Science 48 9. Riazanova A A, Voropay N N, Okladnikov I G and Gordov E P 2016 Development of computational module of regional aridity for web-GIS "Climate" IOP Conf. Series: Earth and Environmental Science 48 10. Rust H, Maraun D and Osborn T J 2009 Modelling seasonality in extreme precipitation Europ Phys J ST 174 99-111 11. Katz R W, Parlange M B and Naveau P 2002 Statistics of extremes in hydrology Advances in Water Resources 25 1287-1304 12. Barbosa S M, Scotto M G and Alonso A M 2011 Summarising changes in air temperature over Central Europe byquantile regression and clustering Nat Hazards Earth Syst Sci 11 27-3233 13. Sterin A M and Timofeev A A 2014 Specific features of estimates of surface air temperature trends in the Russian Federation obtained using quantile regression Proceedings of RIHMI-WDC 178 14. Schölzel C and Friederichs P 2008 Multivariate non-normally distributed random variables in climate research - introduction to the copula approach Nonlin Proc Geophys 15 761-72 15. Salvadori G and De Michele C 2004 Frequency analysis via copulas: Theoretical aspects and applications to hydrological events Water resources research 40 16. Fisher R A and Tippett L H C 1928 Limiting Forms of the Frequency Distribution of the Largest or Smallest Members of a Sample Proc. Cambridge Phil. Soc. 24 180-90 17. Coles S G 2001 An Introduction to Statistical Modelling of Extreme Values (London: Springer) 18. Gilleland E 2016 Package "extRemes" The Comprehensive R Archive Network (CRAN) https://cran.r-project.org/web/packages/extRemes/extRemes.pdf - ref-separator - 19. Gilleland E and Katz R W 2016 extRemes 2.0: An Extreme Value Analysis Package in R Journal of Statistical Software 72 20. Koenker R and Schorfheide F 1994 Quantile spline models for global temperature change Climatic Change 28 395-404 21. Cade B and Noon B 2003 A Gentle introduction to quantile regression for ecologists Front. Ecol. Environ. 1 412-20 22. Baur D, Saisana M and Schulze N 2004 Modelling the effects of meteorological variables on ozone concentration - a quantile regression approach Atmos. Environ. 38 4689-99 23. Elsner J B, Kossin J P and Jagger T H 2008 The increasing intensity of the strongest tropical cyclones Nature 455 92-5 24. Barbosa S M 2008 Quantile trends in Baltic sea-level Geophys. Res. Lett. 35 L22704 25. Koenker R and Hallock K 2001 Quantile Regression J. Economic Perspect. 15 143-56 26. Koenker R 2005 Quantile regression (New York: Cambridge University Press) 27. Koenker R, Portnoy S, Tian P, Zeileis A, Grosjean P Ripley B D 2017 Package "quantreg" The Comprehensive R Archive Network (CRAN) https://cran.r-project.org/web/packages/quantreg/quantreg.pdf - ref-separator - 28. Renard B and Lang M 2007 Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology Adv. Water Resour. 30 897-912 29. Hofert M, Kojadinovic I, Maechler M, Yan Y 2017 Package "Copula" The Comprehensive R Archive Network (CRAN) ftp://cran.r-project.org/pub/R/web/packages/copula/copula.pdf - ref-separator - 30. Yan J 2007 Enjoy the Joy of Copulas: With a Package copula Journal of Statistical Software 21 4 31. Gilleland E 2011 Using R to Analyze Extremes (Boulder, Colorado, U.S.A: National Center for Atmospheric Research) 32. Documentation for RPy2 http://rpy2.readthedocs.io/en/version-2.8.x/index.html - ref-separator - 33. Okladnikov I G, Gordov E P and Titov A G 2016 Development of climate data storage and processing model IOP Conf. Series: Earth and Environmental Science 48 34. Dee D P et al 2011 The ERA-Interim reanalysis: configuration and performance of the data assimilation system Quarterly Journal of the Royal Meteorological Society 137 553-97 Part A 35. APHRODITE JMA, http://www.chikyu.ac.jp/precip/data/APHRO-V1003R1-readme.txt - ref-separator -