Инд. авторы: Рязанова А.А., Окладников И.Г., Гордов Е.П.
Заглавие: Интеграция современных статистических инструментов анализа экстремальных явлений в веб-гис систему "Климат"
Библ. ссылка: Рязанова А.А., Окладников И.Г., Гордов Е.П. Интеграция современных статистических инструментов анализа экстремальных явлений в веб-гис систему "Климат" // CITES 2017: Международная молодежная школа и конференция по вычислительно-информационным технологиям для наук об окружающей среде. - 2017. - Томск: Томский центр научно-технической информации. - С.138-140. - ISBN: 978-5-89702-389-9.
Внешние системы: РИНЦ: 30704536;
Реферат: eng: The second part of 1970s is characterized by the beginning of modern global climate change. The frequency of occurrence and impact of precipitation and temperature extremes (heavy precipitation and strong storms, droughts and heat wave) show positive trends in several regions of the world. These events should be analyzed and studied in order to better understand their impact on the environment and be able to predict them and minimize their consequences. The system “Climate” is based on a combined use of web and GIS technologies. It is a part of a hardware and software complex for “cloud” data analysis using various climatic data sets, as well as dedicated algorithms for their searching, extraction, processing, and visualization. Using of this system significantly facilitates and accelerates analysis of big volumes of geospatial data, allowing researchers to perform complex climate data analysis using desktop PCs with internet connection. At this moment the system already has a large number of computational modules that allow calculating both the standard statistical characteristics of meteorological values and extreme indices recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI) and hydrothermal coefficients. For more detailed analysis of spatial and temporal dynamics of climate change and their impacts we have integrated into our system the special additional statistical packages of program language R that allow to use new more powerful methods of analysis (time-dependent statistics of extremes, quantile regression and copula approach) and thus do more detailed analysis of different extremes, determine the degree of their impacts, and obtain structural links between these extremes and different characteristics of the environment.
Издано: 2017
Физ. характеристика: с.138-140
Цитирование: 1. Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M 2013 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press and NY, USA) p 1535 2. Friederichs P 2007 An Introduction to Extreme Value Theory (Meteorological Institute University of Bonn, COPS, Summer School) 3. Стерин А М, Тимофеев А А 2014 Об особенностях оценок трендов приземной температуры воздуха на территории Российской Федерации, полученных методом квантильной регрессии Труды ВНИИГМИ-МЦД 178 4. Salvadori G, De Michele C 2004 Frequency analysis via copulas: Theoretical aspects and applications to hydrological events Water resources research 40 5. Gordov E P, Okladnikov I G, Titov A G, Bogomolov V Yu, Shulgina T M and Genina E Yu 2012 Geo-information system for investigation of regional climatic changes and first results obtained Atmos. Ocean. Opt. 25 137-43 6. Gordov E P, Shiklomanov A, Okladnikov I G, Prusevich A and Titov A G 2016 Development of Distributed Research Center for analysis of regional climatic and environmental changes IOP Conf. Series: Earth and Environmental Science 48 7. Riazanova A A, Voropay N N, Okladnikov I G, Gordov E P 2016 Development of computational module of regional aridity for web-GIS “Climate” IOP Conf. Series: Earth and Environmental Science 48 8. https://cran.r-project.org/web/packages/extRemes/extRemes.pdf 9. Gilleland E, Katz R W 2016 extRemes 2.0: An Extreme Value Analysis Package in R Journal of Statistical Software Volume 72, Issue 8 10. https://cran.r-project.org/web/packages/quantreg/quantreg.pdf 11. ftp://cran.r-project.org/pub/R/web/packages/copula/copula.pdf 12. Yan J 2007 Enjoy the Joy of Copulas: With a Package copula Journal of Statistical Software Volume 21 Issue 4 13. Gilleland E 2011 Using R to Analyze Extremes National Center for Atmospheric Research (Boulder, Colorado, U.S.A) 14. http://rpy2.readthedocs.io/en/version_2.8.x/index.html 15. Dee D P et al. 2011 The ERA-Interim reanalysis: configuration and performance of the data assimilation system Quarterly Journal of the Royal Meteorological Society Volume 137, Issue 656 Part A Pages 553-597