Инд. авторы: Ромащенко А.В., Петровский Д.В., Шарапова М.Б., Мошкин Ю.М., Купер К.Э., Морозова К.Н., Киселева Е.В., Мошкин М.П.
Заглавие: Эффективность ольфакторного транспорта аморфных и кристаллических наночастиц оксидов марганца
Библ. ссылка: Ромащенко А.В., Петровский Д.В., Шарапова М.Б., Мошкин Ю.М., Купер К.Э., Морозова К.Н., Киселева Е.В., Мошкин М.П. Эффективность ольфакторного транспорта аморфных и кристаллических наночастиц оксидов марганца // Вавиловский журнал генетики и селекции. - 2017. - Т.21. - № 7. - С.848-855. - ISSN 2500-0462. - EISSN 2500-3259.
Внешние системы: DOI: 10.18699/VJ17.305; РИНЦ: 30621474; SCOPUS: 2-s2.0-85037689045;
Реферат: rus: Известно, что наноразмерные твердые аэрозоли способны поступать из носовой полости в мозг в обход гематоэнцефалического барьера. Необходимость исследования факторов, влияющих на назальный транспорт наночастиц, обусловлена тем, что таким образом в мозг могут проникать как ксенобиотики, так и терапевтические препараты. Показано, что биодоступность твердых частиц определяет их размер и поверхностный заряд. Вместе с тем влияние структуры кристаллической решетки практически не исследовано. В данной работе, выполненной на половозрелых самцах мышей C57BL/6J, проанализирована эффективность поступления в ольфакторный эпителий (ОЭ) и обонятельные луковицы (ОЛ) интраназально апплицированных наночастиц оксидов марганца с аморфной и кристаллической структурой. Для оценки накопления магнито-контрастных наночастиц марганца в ОЛ и ОЭ использовали Т1-взвешенную магнитно-резонансную томографию. Установлено, что аморфные частицы накапливаются в ОЭ и ОЛ в большей степени, чем кристаллические. Одной из причин различного поступления в головной мозг интраназально введенных нанообъектов может быть неодинаковая способность аморфных и кристалических частиц преодолевать мукозальный слой, покрывающий ОЭ. Действительно, введение муколитика (дитиотреитол) за 20 мин до аппликации не увеличивало накопление в ОЭ и ОЛ аморфных частиц, но повышало эффективность поступления кристаллических наночастиц. Сведения о различном поступлении аморфных и кристаллических наночастиц из носовой полости в мозг, а также обоснование ключевой роли мукозального слоя в дифференцировании проникающей способности этих частиц будут полезны и при разработке подходов к оценке токсикологической опасности воздушной среды, и для оптимизации методов ингаляционной терапии.
eng: The ability to deliver particulated xenobiotics and therapeutic drugs directly from the nasal cavity to the central nervous system, bypassing the hemato-encephalic barrier, determines a high importance of investigation of factors influencing this process. It was shown that the bioavailability of solid particles is influenced by their size and surface charge. At the same time, the impact of a crystal structure (crystalline/amorphous) has been poorly investigated. In this study, using sexually mature male C57BL/6J mice, we analyzed the efficiency of the nose-to-brain transport of crystalline and amorphous manganese oxide nanoparticles. T1-weighted magnetic resonance imaging (MRI) was used to evaluate the accumulation of manganese nanoparticles in olfactory bulb (OB) and olfactory epithelium (OE). So, it has been established that amorphous particles have higher accumulation rate in OE and OB in comparison with crystalline particles after their intranasal administration. The unequal ability of amorphous and crystalline particles to overcome the mucosal layer covering the OE may be one of the possible reasons for the different nose-to-brain transport efficiency of particulated matter. Indeed, the introduction of mucolytic (dithiothreitol) 20 minutes prior to intranasal particle application did not influence the accumulation of amorphous particles in OE and OB, but enhanced the efficiency of crystalline nanoparticle entry. Data on the different intake of amorphous and crystalline nanoparticles from the nasal cavity to the brain, as well as the evidence for the key role of the mucosal layer in differentiating the penetrating power of these particles will be useful in developing approaches to assessing air pollution and optimizing the methods of inhalation therapy.
Ключевые слова: ольфакторный транспорт; мукозальный слой; магнитнорезонансная томография; magnetic resonance imaging; mucosal layer; Olfactory transport; amorphous and crystalline nanoparticles; аморфные и кристаллические наночастицы;
Издано: 2017
Физ. характеристика: с.848-855
Цитирование: 1. Antonini J.M., Santamaria A.B., Jenkins N.T., Albini E., Lucchini R. Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology. 2006; 27(3): 304-310. 2. Barman S.C., Singh R., Negi M.P.S., Bhargava S.K. Fine particles (PM2. 5) in ambient air of Lucknow city due to fireworks on Diwali festival. J. Environ. Biol. 2009; 30(5): 625-632. 3. Borm P.J.A. Particle toxicology: from coal mining to nanotechnology. Inhal. Toxicol. 2002; 14(3): 311-324 4. Brook R.D., Bard R.L., Burnett R.T., Shin H.H., Vette A., Croghan C., Phillips M., Rodes C., Thornburg J., Williams R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup. Environ. Med. 2010; 68: 224-230. 5. Chen Z., Meng H., Xing G., Yuan H., Zhao F., Liu R., Chang X., Gao X., Wang T., Jia G. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ. Sci. Technol. 2008; 42(23): 8985-8992. 6. Crater J.S., Carrier R.L. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 2010; 10(12): 1473-1483. 7. Donaldson K., Brown D., Clouter A., Duffin R., MacNee W., Renwick L., Tran L., Stone V. The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 2002; 15(2): 213-220. 8. Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006; 114(8): 1172-1178. 9. Evdokov O.V., Titov V.M., Tolochko B.P., Sharafutdinov M.R. In situ time-resolved diffractometry at SSTRC. Nucl. Instrum. Meth. Phys. Res. A. 2009; 603(1): 194-195. 10. Ferrari S., Kitson C., Farley R., Steel R., Marriott C., Parkins D.A., Scarpa M., Wainwright B., Evans M.J., Colledge W.H. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy. 2001; 8(18): 1380-1386. 11. Genter M.B., Newman N.C., Shertzer H.G., Ali S.F., Bolon B. Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol. Pathol. 2012; 40(7): 1004-1013. Good D.J., Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009; 9(5): 2252-2264. 12. Gupta P., Chawla G., Bansal A.K. Physical stability and solubility advantage from amorphous celecoxib: the role of thermodynamic quantities and molecular mobility. Mol. Pharm. 2004; 1(6): 406-413. 13. Hancock B.C., Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000; 17(4): 397-404. 14. Heusinkveld H.J., Wahle T., Campbell A., Westerink R.H.S., Tran L., Johnston H., Stone V., Cassee F.R., Schins R.P.F. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016; 56: 94-106. 15. Iqbal A., Ahmad I., Khalid M.H., Nawaz M.S., Gan S.H., Kamal M.A. Nanoneurotoxicity to nanoneuroprotection using biological and computational approaches. J. Environ. Sci. Health. C. 2013; 31(3): 256-284. 16. Kampfrath T., Maiseyeu A., Ying Z., Shah Z., Deiuliis J.A., Xu X., Kherada N., Brook R.D., Reddy K.M., Padture N.P. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 2011; 108(6): 716-726. 17. Kittelson D.B., Watts W.F., Johnson J.P. Nanoparticle emissions on Minnesota highways. Atmos. Environ. 2004; 38(1): 9-19. 18. Kreyling W.G. Discovery of unique and ENM-specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicol. Appl. Pharmacol. 2016; 299: 41-46. 19. Lai S.K., O’Hanlon D.E., Harrold S., Man S.T., Wang Y.-Y., Cone R., Hanes J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. 2007; 104(5): 1482-1487. 20. Lai S.K., Wang Y.-Y., Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009; 61(2): 158-171. 21. Minni E., Gustafsson T.E., Koponen M., Kalliomaki P.-L. A study of the chemical structure of particles in the welding fumes of mild and stainless steel. J. Aerosol Sci. 1984; 15(1): 57-68. 22. Mistry A., Glud S.Z., Kjems J., Randel J., Howard K.A., Stolnik S., Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J. Drug Targeting. 2009; 17(7): 543-552. 23. Miyazaki S., Hori R., Arita T. Physico-chemical property and gastrointestinal absorption of some solid phases to tetracycline. Yakugaku Zasshi. 1975; 95(6): 629. 24. Morales J.A., Herzog S., Kompter C., Frese K., Rott R. Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med. Microbiol. Immunol. 1988; 177(2): 51-68. 25. Moshkin M.P., Petrovski D.V., Akulov A.E., Romashchenko A.V., Gerlinskaya L.A., Ganimedov V.L., Muchnaya M.I., Sadovsky A.S., Koptyug I.V., Savelov A.A. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus. Proc. R. Soc. B: Biol. Sci. 2014; 281(1792). DOI 10.1098/rspb.2014. 0919 26. Murdande S.B., Pikal M.J., Shanker R.M., Bogner R.H. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J. Pharm. Sci. 201099(3): 1254-1264. 27. Norris D.A., Sinko P.J. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J. Appl. Polym. Sci. 1997; 63(11): 1481 -1492. 28. Parmalee N.L., Aschner M. Manganese and aging. Neurotoxicology. 2016; 56: 262-268. 29. Patchin E.S., Anderson D.S., Silva R.M., Uyeminami D.L., Scott G.M., Guo T., Van Winkle L.S., Pinkerton K.E. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ. Health Persp. 2016; 124(12): 1870. DOI 10.1289/EHP1234. 30. Ryzhikov A.B., Ryabchikova E.I., Sergeev A.N., Tkacheva N.V. Spread of Venezuelan equine encephalitis virus in mice olfactory tract. Arch. Virol. 1995; 140(12): 2243-2254. 31. Sharma V., Kumar A., Dhawan A. Nanomaterials: exposure, effects and toxicity assessment. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 2012; 82(1): 3-11. 32. Stroop W.G., Rock D.L., Fraser N.W. Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization. Lab. Invest. 1984; 51(1): 27-38. 33. Trickler W.J., Lantz S.M., Schrand A.M., Robinson B.L., Newport G.D., Schlager J.J., Paule M.G., Slikker W., Biris A.S., Hussain S.M. Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine. 2012; 7(6): 835-846. 34. Wu J., Wang C., Sun J., Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011; 5(6): 4476-4489. 35. Yang W., Johnston K.P., Williams R.O. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur. J. Pharm. Biopharm. 2010; 75(1): 33-41.