Инд. авторы: Binjumah W.M., Redyuk A., Adams R., Davey N., Sun Y.
Заглавие: Error Correction over Optical Transmission
Библ. ссылка: Binjumah W.M., Redyuk A., Adams R., Davey N., Sun Y. Error Correction over Optical Transmission // Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM): Porto, Portugal, February 24-26, 2017. - 2017. - P.239-248. - ISBN: 978-989-758-222-6.
Внешние системы: DOI: 10.5220/0006211402390248; РИНЦ: 35748631; SCOPUS: 2-s2.0-85049451151; WoS: 000413240500027;
Реферат: eng: Reducing bit error rate and improving performance of modern coherent optical communication system is a significant issue. As the distance travelled by the information signal increases, bit error rate will degrade. Support Vector Machines are the most up to date machine learning method for error correction in optical transmission systems. Wavelet transform has been a popular method to signals processing. In this study, the properties of most used Haar and Daubechies wavelets are implemented for signals correction. Our results show that the bit error rate can be improved by using classification based on wavelet transforms (WT) and support vector machine (SVM).
Ключевые слова: WAVELETS; Wavelet Transform; Error Correction; Optical Signals; Machine Learning; Support Vector Machine (SVM); Coherent Optical Communications;
Издано: 2017
Физ. характеристика: с.239-248
Конференция: Название: 6th International Conference on Pattern Recognition Applications and Methods
Аббревиатура: ICPRAM
Город: Porto
Страна: Portugal
Даты проведения: 2017-02-24 - 2017-02-26
Цитирование: 1. Bernstein, G., Rajagopalan, B., and Saha, D. (2003). Optical network control: Architecture, protocols, and standards. Addison-Wesley Longman Publishing Co., Inc. 2. Binjumah, W., Redyuk, A., Davey, N., Adams, R., and Sun, Y. (2015). Reducing bit error rate of optical data transmission with neighboring symbol information using a linear support vector machine. In Proceedings of the ECMLPKDD 2015 Doctoral Consortium(2015), pages 67-74. Aalto University. 3. Kanprachar, S. (1999). Modeling and analysis of the effects of impairments in fiber optic links. 4. Lee, S.-H. and Lim, J. S. (2012). Parkinson's disease classification using gait characteristics and wavelet-based feature extraction. Expert Systems with Applications, 39(8):7338-7344. 5. Liu, Z., Cao, H., Chen, X., He, Z., and Shen, Z. (2013). Multi-fault classification based on wavelet svm with pso algorithm to analyze vibration signals from rolling element bearings. Neurocomputing, 99:399-410. 6. Metaxas, A., Redyuk, A., Sun, Y., Shafarenko, A., Davey, N., and Adams, R. (2013). Linear support vector machines for error correction in optical data transmission. In International Conference on Adaptive and Natural Computing Algorithms, pages 438-445. Springer. 7. Plonka, G., Iske, A., and Tenorth, S. (2013). Optimal representation of piecewise holder smooth bivariate functions by the easy path wavelet transform. Journal of Approximation Theory, 176:42-67. 8. Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing. IEEE signal processing magazine, 8(LCAVARTICLE- 1991-005):14-38. 9. Smola, A. J. and Scholkopf, B. (1998). Learning with kernels. Citeseer. 10. Walker, J. S. (2008). A primer on wavelets and their scientific applications. CRC press. 11. Wang, H., Guo, J., Wang, T., Zhang, Q., and Shao, J. (2012). Physical layer design for free space optical communication. In Control Engineering and Communication Technology (ICCECT), 2012 International Conference on, pages 978-981. IEEE. 12. Williams, J. R. and Amaratunga, K. (1994). Introduction to wavelets in engineering. International Journal for Numerical Methods in Engineering, 37(14):2365-2388.