Инд. авторы: Demenkov A.G., Chernykh G.G.
Заглавие: Self-similar decay of momentumless swirling turbulent wake
Библ. ссылка: Demenkov A.G., Chernykh G.G. Self-similar decay of momentumless swirling turbulent wake // Thermophysics and Aeromechanics. - 2017. - Vol.24. - Iss. 6. - P.867-871. - ISSN 0869-8643. - EISSN 1531-8699.
Внешние системы: DOI: 10.1134/S0869864317060051; РИНЦ: 35536890; SCOPUS: 2-s2.0-85042847394; WoS: 000426696900005;
Реферат: eng: Numerical simulation of the decay of a momentumless swirling turbulent wake of a body of revolution has been carried out. It has been shown that beginning with the distances of the order of 1000 body diameters, the flow passes to the self-similar regime. Using the results of the numerical analysis of the flow, simplified mathematical models of far wake have been constructed.
Ключевые слова: self-similar decay; mathematical modeling; swirling momentumless turbulent wake;
Издано: 2017
Физ. характеристика: с.867-871
Цитирование: 1. A.J. Reynolds, Similarity in swirling wakes and jets, J. Fluid Mech., 1962, Vol. 15, Pt. 2, P. 241-243. 2. J.A. Schetz Injection and mixing in turbulent flow, In: Progress in astronautics and aeronautics, Vol. 68, M. Summerfield (Ed.), New York University, 1980. 3. A.G. Gumilevskii, Investigation of momentumless swirled wakes on the basis of a two-parameter turbulence model, Fluid Dynamics, 1992, Vol. 27, No. 3, P. 326-330. 4. V.A. Kostomakha and N.V. Lesnova, Turbulent swirling wake behind a sphere with complete or partial drag compensation, J. Appl. Mech. Tech. Phys., 1995, Vol. 36, No. 2, P. 226-233. 5. G.G. Chernykh, A.G. Demenkov, and V.A. Kostomakha, Numerical model of a swirling momentumless turbulent wake, Russ. J. Numer. Anal. Math. Modelling, 1998, Vol. 13, No. 4, P. 279-288. 6. J. Piquet, Turbulent Flows, in: Models and Physics. Springer-Verlag, Berlin, Heidelberg, 1999. 7. M.-H. Lu and A.I. Sirviente, Numerical study of the momentumless wake of an axisymmetric body, 43rd AIAA Aerospace Sci. Meeting and Exhibit, 10-13 January 2005, Reno, Nevada. AIAA Paper, 2005, No. 2005-1109. 8. A.G. Demenkov and G.G. Chernykh, Numerical modeling of the swirling turbulent wake decay past a self-propelled body, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 5, P. 667-675. 9. B.E. Launder and A. Morse, Numerical prediction of axisymmetric free shear flows with a Reynolds stress closure, in: F. Durst, B.E. Launder, F.W. Schmidt, and J.H. Whitelaw (Eds.), Turbulent Shear Flows I, Springer, Berlin, Heidelberg, 1979, P. 279-294. 10. W. Rodi, A new algebraic relation for calculating the Reynolds stresses, ZAMM, 1976, Vol. 56, P. 219-221. 11. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics. Vol. 2: Mechanics of Turbulence, MIT Press, Cambridge, Mass., 1975. 12. O.V. Kaptsov, A.V. Fomina, G.G. Chernykh, and A.V. Schmidt, Self-similar decay of the momentumless turbulent wake in a passive stratified medium, Mathematical Modeling, 2015, Vol. 27, No. 1, P. 84-98.