Инд. авторы: Khakimzyanov G., Dutykh D., Gusev O., Shokina N.
Заглавие: Dispersive shallow water wave modelling. Part II: Numerical simulation on a globally flat space
Библ. ссылка: Khakimzyanov G., Dutykh D., Gusev O., Shokina N. Dispersive shallow water wave modelling. Part II: Numerical simulation on a globally flat space // Communications in Computational Physics. - 2018. - Vol.23. - Iss. 1. - P.30-92. - ISSN 1815-2406. - EISSN 1991-7120. - http://www.global-sci.com/issue/v23/n1/pdf/30.pdf
Внешние системы: DOI: 10.4208/cicp.OA-2016-0179b; РИНЦ: 46732613; SCOPUS: 2-s2.0-85067629227; WoS: 000426269200002;
Реферат: eng: In this paper we describe a numerical method to solve numerically the weakly dispersive fully nonlinear SERRE-GREEN-NAGHDI (SGN) celebrated model. Namely, our scheme is based on reliable finite volume methods, proven to be very efficient for the hyperbolic part of equations. The particularity of our study is that we develop an adaptive numerical model using moving grids. Moreover, we use a special form of the SGN equations where non-hydrostatic part of pressure is found by solving a linear elliptic equation. Moreover, this form of governing equations allows to determine the natural form of boundary conditions to obtain a well-posed (numerical) problem.
Ключевые слова: TSUNAMI GENERATION; FINITE-VOLUME; SURFACE-WAVES; GREEN-NAGHDI EQUATIONS; DISCRETE GALERKIN METHODS; KORTEWEG-DEVRIES EQUATION; EXTENDED BOUSSINESQ EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; 2 SOLITARY WAVES; conservative finite differences; finite volumes; moving adaptive grids; non-hydrostatic pressure; Nonlinear dispersive waves; UNDERWATER LANDSLIDES;
Издано: 2018
Физ. характеристика: с.30-92
Ссылка: http://www.global-sci.com/issue/v23/n1/pdf/30.pdf