Инд. авторы: Khakimzyanov G., Dutykh D., Fedotova Z.I., Mitsotakis D.
Заглавие: Dispersive shallow water wave modelling. Part I: Model derivation on a globally flat space
Библ. ссылка: Khakimzyanov G., Dutykh D., Fedotova Z.I., Mitsotakis D. Dispersive shallow water wave modelling. Part I: Model derivation on a globally flat space // Communications in Computational Physics. - 2018. - Vol.23. - Iss. 1. - P.1-29. - ISSN 1815-2406. - EISSN 1991-7120. - http://www.global-sci.com/issue/v23/n1/pdf/1.pdf
Внешние системы: DOI: 10.4208/cicp.OA-2016-0179a; РИНЦ: 47039149; SCOPUS: 2-s2.0-85114954367; WoS: 000426269200001;
Реферат: eng: In this paper we review the history and current state-of-the-art in modelling of long nonlinear dispersive waves. For the sake of conciseness of this review we omit the unidirectional models and focus especially on some classical and improved BOUSSINESQ-type and SERRE-GREEN-NAGHDI equations. Finally, we propose also a unified modelling framework which incorporates several well-known and some less known dispersive wave models. The present manuscript is the first part of a series of two papers. The second part will be devoted to the numerical discretization of a practically important model on moving adaptive grids.
Ключевые слова: FINITE-VOLUME; ROTATING SPHERE; 2-WAY PROPAGATION; NUMERICAL-ANALYSIS; SURFACE-WAVES; AMPLITUDE LONG WAVES; SYSTEMS; GREEN-NAGHDI EQUATIONS; solitary waves; shallow water equations; nonlinear dispersive waves; Long wave approximation; NONLINEAR BOUSSINESQ MODEL; TSUNAMI WAVES;
Издано: 2018
Физ. характеристика: с.1-29
Ссылка: http://www.global-sci.com/issue/v23/n1/pdf/1.pdf