Цитирование: | 1. [1] Flügge, W., Stresses in shells. 2nd ed., 1973, Springer Verlag, Berlin.
2. [2] Timoshenko, S.P., Gere, J.M., Theory of elastic stability. 2nd ed., 1963, McGraw-Hill, New York.
3. [3] Brush, D.O., Almroth, B.O., Buckling of bars, plates and shell. 1975, McGraw Hill, New York.
4. [4] Yamaki, N., Elastic stability of circular cylindrical shells. 1984, Elsevier, Amsterdam.
5. [5] Volmir, A.S., Stability of deformable systems. 1967, State Publishing House (Nauka), Moscow [in Russian].
6. [6] Alfutov, N.A., Stability of elastic structures. 2010, Springer Verlag, Berlin.
7. [7] Jones, R.M., Buckling of bars, plates and shells. 2006, Bull Ridge Publishing, Blacksburg, Virginia.
8. [8] Venstel, E., Krauthammer, T., Thin plates and shells. Theory, analysis and applications. 2001, Marcel Dekker Inc, New York.
9. [9] Ross, C.T.F., A conceptual design of an underwater missile launcher. Ocean Eng 32 (2005), 85–99.
10. [10] Ross, C.T.F., A conceptual design of an underwater vehicle. Ocean Eng 33 (2006), 2087–2104.
11. [11] Carvelli, V., Panzeri, N., Poggi, C., Buckling strength of GFRP under-water vehicles. Compos B, 2001, 89–101.
12. [12] Messager, T., Pyrz, M., Gineste, B., Chauchot, P., Optimal laminations of thin underwater composite cylindrical vessels. Compos Struct 58 (2002), 529–537.
13. [13] Hur, S.H., Son, H.J., Kweon, J.H., Choi, J.H., Postbuckling of composite cylinders under external hydrostatic pressure. Compos Struct 86 (2008), 114–124.
14. [14] Hernandez-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D., Davies, P., Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos Sci Technol 68 (2008), 1015–1024.
15. [15] Moon, C.J., Kim, I.H., Choi, B.H., Kweon, J.H., Choi, J.H., Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Compos Struct 92 (2010), 2241–2251.
16. [16] Li, Z.M., Qiao, P., Buckling and postbuckling of anisotropic laminated cylindrical shells under combined external pressure and axial compression in thermal environments. Compos Struct 119 (2015), 709–726.
17. [17] Pinto Correia, I.F., Barbosa, J.I., Mota Soares, C.M., Mota Soares, C.A., A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling. Comput Struct 76 (2000), 299–317.
18. [18] Santos, H., Mota Soares, C.M., Mota Soares, C.A., Reddy, J.N., A semi-analytical finite element model for the analysis of laminated 3D axisymmetric shells: static, free vibrations and buckling. Compos Struct 71 (2005), 273–281.
19. [19] Lopatin, A.V., Morozov, E.V., Buckling of a composite cantilever circular cylindrical shell subjected to uniform external lateral pressure. Compos Struct 94 (2012), 553–562.
20. [20] Lopatin, A.V., Morozov, E.V., Buckling of the composite orthotropic clamped–clamped cylindrical shell loaded by transverse inertia forces. Compos Struct 95 (2013), 471–478.
21. [21] Lopatin, A.V., Morozov, E.V., Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Compos Struct 122 (2015), 209–216.
22. [22] Sobel, L.H., Effects of boundary conditions on the stability of cylinders subject to lateral axial pressures. AIAA J 2 (1964), 1437–1440.
23. [23] Vasiliev, V.V., Mechanics of composite structures. 1993, Taylor & Francis, Washington, DC.
24. [24] Vasiliev, V.V., Morozov, E.V., Advanced mechanics of composite materials and structural elements. 3rd ed., 2013, Elsevier, Amsterdam.
25. [25] Blevins, R.D., Formulas for natural frequency and mode shape. 2001, Krieger Publishing Company, Malabar, FL.
26. [26] MSC Nastran. Quick reference guide's: MSC. Software Corporation; 2011.
|