Цитирование: | 1. [1] Vasiliev, V.V., Barynin, V.A., Razin, A.F., Anisogrid composite lattice structures – Development and aerospace applications. Compos Struct 94 (2012), 1117–1127.
2. [2] Zhang, Y., Xue, Z., Chen, L., Fang, D., Deformation and failure mechanisms of lattice cylindrical shells under axial loading. Int J Mech Sci 51 (2009), 213–221.
3. [3] Frulloni, E., Kenny, J.M., Conti, P., Torre, L., Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Compos Struct 78 (2007), 519–528.
4. [4] Morozov, E.V., Lopatin, A.V., Nesterov, V.A., Finite-element modelling and buckling analysis of anisogrid composite lattice cylindrical shells. Compos Struct 93 (2011), 308–323.
5. [5] Buragohain, M., Velmurugan, R., Study of filament wound grid-stiffened composite cylindrical structures. Compos Struct 93 (2011), 1031–1038.
6. [6] Vasiliev, V.V., Mechanics of composite structures. 1993, Taylor & Francis, Washington.
7. [7] Vasiliev, V.V., Morozov, E.V., Advanced mechanics of composite materials and structural elements. 3rd ed., 2013, Elsevier, Amsterdam.
8. [8] Totaro, G., Gurdal, Z., Optimal design of composite lattice shell structures for aerospace applications. Aerosp Sci Technol 13 (2009), 157–164.
9. [9] Paschero, M., Hyer, M.W., Axial buckling of an orthotropic circular cylinder: application to orthogrid concept. Int J Solids Struct 46 (2009), 2151–2171.
10. [10] Totaro, G., Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells. Compos Struct 94 (2012), 446–452.
11. [11] Totaro, G., Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells. Compos Struct 95 (2013), 403–410.
12. [12] Totaro, G., Optimal design concepts for flat isogrid and anisogrid lattice panels longitudinally compressed. Compos Struct 129 (2015), 101–110.
13. [13] Zheng, Q., Ju, S., Jiang, D., Anisotropic mechanical properties of diamond lattice composite structures. Compos Struct 109 (2014), 23–30.
14. [14] Leissa AW. Buckling of laminated composite plates and shell panels. Technical report AFWAL-TR-85-3069; 1985.
15. [15] Hu, H.T., Yang, J.S., Buckling optimization of laminated cylindrical panels subjected to axial compressive load. Compos Struct 81 (2007), 374–385.
16. [16] Shahab, S., Mirzaeifar, R., Bahai, H., Coupled modification of natural frequencies and buckling loads of composite cylindrical panels. Int J Mech Sci 51 (2009), 708–717.
17. [17] Lal, A., Singh, B.N., Kale, S., Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygrothermomechanical loading. Compos Struct 93 (2011), 1187–1200.
18. [18] Less, H., Abramovich, H., Dynamic buckling of a laminated composite stringer–stiffened cylindrical panel. Compos B 43 (2012), 2348–2358.
19. [19] Chenghu, L., Zhe, W., Buckling of 120o stiffened composite cylindrical shell under axial compression – experiment and simulation. Compos Struct 128 (2015), 199–206.
20. [20] Gontkevich VS. Natural vibrations of plates and shells. Kiev: Naukova Dumka; 1964 (Transl. by Lockheed Missiles and Space Co.).
21. [21] Blevins, R.D., Formulas for natural frequency and mode shape. 2001, Krieger Publishing Company, Malabar, FL.
22. [22] MSC Nastran. Quick reference guide's: MSC. Software Corporation; 2011.
|