Инд. авторы: Чирков Д.В., Щербаков П.К., Чёрный С.Г., Скороспелов В.А., Турук П.А.
Заглавие: Численное исследование влияния вдува воздуха на кавитационное течение в радиально-осевой гидротурбине
Библ. ссылка: Чирков Д.В., Щербаков П.К., Чёрный С.Г., Скороспелов В.А., Турук П.А. Численное исследование влияния вдува воздуха на кавитационное течение в радиально-осевой гидротурбине // Теплофизика и аэромеханика. - 2017. - Т.24. - № 5. - С.711-723. - ISSN 0869-8635.
Внешние системы: РИНЦ: 30291161;
Реферат: rus: Использование некоторых радиально-осевых турбин на повышенных расходах жидкости сопровождается сильными пульсациями давления и мощности. Эти пульсации связаны с гидродинамической неустойчивостью кавитирующего течения жидкости. Во многих случаях при эксплуатации турбины амплитуда таких пульсаций может быть существенно снижена путем вдува/впуска воздуха под рабочее колесо турбины. В настоящей работе такой эффект исследуется численно. Для этого в предложенную ранее авторами гибридную одно-трехмерную модель течения смеси «жидкость-пар» в проточном тракте гидроэлектростанции добавляется вторая газообразная компонента ¾ неконденсируемый воздух. Описываются граничные условия и численный метод для решения уравнений модели. Для проверки точности расчета границы раздела «жидкость-газ» численный метод сначала был применен для решения задачи о разрушении плотины. Затем алгоритм применялся для моделирования течения в гидравлической турбине с вдувом воздуха под рабочее колесо. Показано, что с увеличением расхода вдуваемого воздуха амплитуда пульсаций давления снижается. Выявлен механизм изменения структуры потока в конусе отсасывающей трубы, приводящий к стабилизации течения при вдуве воздуха.
Ключевые слова: гидротурбины; кавитация; численное моделирование; автоколебания; вдув воздуха;
Издано: 2017
Физ. характеристика: с.711-723
Цитирование: 1. 1. Avellan F. Introduction to cavitation in hydraulic machinery // The 6th Intern. Conf. on Hydraulic Machinery and Hydrodynamics, Timisoara, Romania, 21-22 October. 2004. P. 11-22. 2. 2. Coutier-Delgosha O., Morel P., Fortes-Patella R., Reboud J.L. Numerical simulation of turbopump inducer cavitating behavior // Int. J. of Rotating Machinery. 2005. Vol. 2005, Iss. 2. P. 135-142. 3. 3. Kurosawa S., Lim S.M., Enomoto Y. Virtual model test for a Francis turbine // IOP Conference Series: Earth and Environmental Sci. 2010. Vol. 12, No. 1. Proc. of 25th IAHR Symp. on Hydraulic Machinery and Systems. P. 012063-1-012063-10. 4. 4. Motycak L., Skotak A., Kupcik R. Kaplan turbine tip vortex cavitation-analysis and prevention // IOP Conference Series: Earth and Environmental Sci. 2012. Vol. 15, Part 3. Proc. of 26th IAHR Symp. on Hydraulic Machinery and Systems. P. 032060-1-032060-8. 5. 5. Панов Л.В., Чирков Д.В., Чёрный С.Г., Пылев И.М., Сотников А.А. Численное моделирование стационарных кавитационных течений вязкой жидкости в гидротурбине Френсиса // Теплофизика и аэромеханика. 2012. Т. 19, № 4. С. 461-473. 6. 6. Jošt D., Lipej A. Numerical prediction of non-cavitating and cavitating vortex rope in a Francis turbine draft tube // Strojniški vestnik ¾ J. of Mechanical Engineering. 2011. Vol. 57, No. 6. P. 445-456. 7. 7. Wu Y., Liu S., Dou H.-S., Zhang L. Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows // Engng with Computers. 2011. Vol. 27, No. 3. P. 235-250. 8. 8. Арм В.Х., Окулов В.М., Пылев И.М. Неустойчивость напорных систем гидроэнергоблоков // Изв. АН. Энергетика. 1996. № 3. С. 122-132. 9. 9. Курзин В.Б. Механизм возникновения низкочастотных гидроакустических автоколебаний в проточной части гидроагрегата // Прикл. механика и технич. физика. 2017. (В печати). 10. 10. Казакевич В.В. Автоколебания (помпаж) в компрессорах. М.: Машиностроение, 1974. 264 с. 11. 11. Юркевич Б.Н. Отзыв на ст. Лобановского Ю.И. “Автоколебания напорных систем и разрушение гидроагрегатов” // Гидротехническое строительство. 2011. № 1. С. 51-55. 12. 12. Koutnik J., Pulpitel L. Modeling of the Francis turbine full-load surge // Modeling, Testing and Monitoring for Hydro Power plants, Lausanne, Switzerland. 1996. P. 143-154. 13. 13. Koutnik J., Nicolet C., Schohl G.A., Avellan F. Overload surge event in a pumped storage power plant // Proc. of IAHR Symp. on Hydraulic Machinery and Systems. Yokohama, Japan. 2006. 14 p. 14. 14. Dörfler P. Evaluating 1D models for vortex-induced pulsation in Francis turbines // Proc. of 3rd IAHR Working Group on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems Brno, Czech Republic. 2009. P. 315-324. 15. 15. Chirkov D., Avdyushenko A., Panov L., Bannikov D., Cherny S., Skorospelov V., Pylev I. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions // Proc. of 26th IAHR Symp. on Hydraulic Machinery and Systems, Beijing, China. 2012. 9 p. 16. 16. Chirkov D., Panov L., Cherny S., Pylev I. Numerical simulation of full load surge in Francis turbines based on three-dimensional cavitating flow model // Proc. of 27th IAHR Symp. on Hydraulic Machinery and Systems, Montreal, Canada, 2014. 11 p. 17. 17. Chirkov D., Cherny S., Scherbakov P., Zakharov A. Evaluation of range of stable operation of hydraulic turbine based on 1D-3D model of full load pulsations // Proc. of 6th IAHR Working Group on Cavitation and dynamic problems in hydraulic machinery and systems. Ljubljana, Slovenia. 2015. P. 177-184. 18. 18. Papillon B., Kirejczyk J., Sabourin M. Atmospheric air admission in hydro turbines // Hydrovision. 2000. Paper No. 3C. 19. 19. Dörfler P., Sick M., Coutu A. Flow-Induced pulsation and vibration in hydroelectric machinery. London: Springer-Verlag, 2013. 242 p. 20. 20. Türkmenoglu V. The vortex effect of Francis turbine in electric power generation // Turkish J. Electrical Engng and Computer Sci. 2013. Vol. 21, No. 1. P. 26-37. 21. 21. Nicolet C. Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems. Ph. D. Thesis EPFL. 2007. No. 3751. 314 p. 22. 22. Chen Y.S., Kim S.W. Computation of turbulent flows using an extended k-e turbulence closure model // NASA CR-179204, 1987. 22 p. 23. 23. Zwart P.J., Gerber A.G., Belamri T.A. Two-phase flow model for predicting cavitation dynamics // ICMF, 2004. Intern. Conf. on Multiphase Flow, Yokohama, Japan. 2004. Paper No. 152. 24. 24. Черный С.Г., Чирков Д.В., Лапин В.Н., Скороспелов В.А., Шаров С.В. Численное моделирование течений в турбомашинах. Новосибирск: Наука, 2006. 206 с. 25. 25. Kunz R.F., Boger D.A., Stinebring D.A. et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction // Computers and Fluids. 2000. Vol. 29, No. 8. P. 849-875. 26. 26. Панов Л.В., Чирков Д.В., Черный С.Г. Численные алгоритмы моделирования кавитационных течений вязкой жидкости // Вычислительные технологии. 2011. Т. 16, № 4. С. 96-113. 27. 27. Koshizuka S., Oka. Y. Moving-particle semi-implicit method for fragmentation of incompressible // Fluid Nuclear Sci. and Engng. 1996. Vol. 123. P. 421-434. 28. 28. Martin J., Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sci. 1952. Vol. 244, No. 882. P. 312-324. 29. 29. Ubbink O. Numerucal prediction of two fluid systems with sharp interfaces. Ph. D. Thesis. London: Imperial College of Sci. Technology and Medicine, 1997. 136 p. 30. 30. Susan-Resiga R., Vu T.C., Muntean S., Ciocan G.D., Nennemann B. Jet control of the draft tube vortex rope in Francis turbines at partial discharge // IAHR Symp. on Hydraulic Machinery and Systems. Yokohama, Japan, 2006.