Инд. авторы: Gaskova O.L., Strakhovenko V.D., Ermolaeva N.I., Zarubina E.Y., Ovdina E.A
Заглавие: A simple method to model the reduced environment of lake bottom sapropel formation
Библ. ссылка: Gaskova O.L., Strakhovenko V.D., Ermolaeva N.I., Zarubina E.Y., Ovdina E.A A simple method to model the reduced environment of lake bottom sapropel formation // Chinese Journal of Oceanology and Limnology. - 2017. - Vol.35. - Iss. 4. - P.956-966. - ISSN 0254-4059.
Внешние системы: DOI: 10.1007/s00343-017-5345-9; РИНЦ: 30389085; SCOPUS: 2-s2.0-85020927087; WoS: 000403701200026;
Реферат: eng: The Kambala and Barchin brackish lakes (Baraba steppe, southern West Siberia) contain an organic-rich sapropel layer that was formed in oxygen-depleted waters. We measured the bulk sediment elemental composition, the water chemistry and determined the mineralogical composition and predominant biota species (Diatoms and Cyanobacteria in phytoplankton community respectively) in the lakes. The result indicates that the first lake has a siliceous type of sapropel and the second a carbonaceous one. A computer thermodynamic model was developed for chemical interaction in water-bottom sediment systems of the Kambala and Barchin Lakes. The surface sodium bicarbonate waters are supersaturated with respect to calcite, magnesite (or low Mg-calcite), quartz and chlorite with minor strontianite, apatite and goethite (pH 8.9–9.3, Eh 0.3 V). Nevertheless, it is shown that during sapropel deposition, deep silt waters should be anoxic (Eh<0 V). The virtual component CH2O has been used to create an anoxic environment suitable for pyrite formation due to the biotic community impact and abiotic reduction. Thermodynamic calculation has shown that silt water is not necessarily euxinic (anoxic and sulfidic). Depending on Eh, sulfate sulfur can dominate in solution, causing the formation of gypsum together with pyrite. An attempt was made to find a reason for solution supersaturation with respect to Ca and Mg ions due to their complexation with humic acids. © 2017, Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg.
Ключевые слова: silica; sapropel sediments; mineral composition; calcite; brackish lakes; thermodynamic calculations;
Издано: 2017
Физ. характеристика: с.956-966
Цитирование: 1. Berner R A, Westrich J T, Graber R, Smith J, Martens C S. 1978. Inhibition of aragonite precipitation from supersaturated seawater; a laboratory and fi eld study. Am. J. Sci., 278 (6): 816-837 2. Bilan M I, Usov A I. 2001. Polysaccharides of calcareous algae and their eff ect on the calcifi cation process. Russian Journal of Bioorganic Chemistry, 27 (1): 2-16, http://dx.doi.org/10.1023/A:1009584516443. 3. Borzenko S V, Zamana L V. 2008. Sulfate reduction as factor of the formation of soda waters in Lake Doroninskoe, eastern Transbaikalia. Vestn. Tomsk. Gos. Univ., 312: 188-193. 4. Calas G, McMillan P F, Bernier-Latmani R. 2015. Environmental mineralogy: new challenges, new materials. Elements, 11 (4): 247-252 5. Chen T, Neville A, Yuan M D. 2005. Assessing the eff ect of Mg 2+ on CaCO 3 scale formation-bulk precipitation and surface deposition. Journal of Crystal Growth, 275 (1-2): е1 341-е1 347, http://dx.doi.org/10.1016/j.jcrysgro.2004.11.169 6. Diez-Ercilla M, Sá nchez-España J, Yusta I, Wendt-Potthoff K, Koschorreck M. 2014. Formation of biogenic sulphides in the water column of an acidic pit lake: biogeochemical controls and eff ects on trace metal dynamics. Biogeochemistry, 121 (3): 519-536, http://dx.doi.org/10. 1007%2Fs10533-014-0020-0. 7. Gallagher K L, Kading T J, Braissant O, Dupraz C, Visscher P T. 2012. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfatereducing bacteria. Geobiology, 10 (6): 518-5 8. Gas'kova O L, Isupov V P, Vladimirov A G, Shvartsev S L, Kolpakova M N. 2015. Thermodynamic modeling of the behavior of uranium and arsenic in mineralized Shaazgai-Nuur Lake (Northwest Mongolia). Doklady Earth Sciences, 465 (1): 1 159-1 163, http://dx.doi.org/10.1134/S1028334X15110094 9. Gas'kova O L, Sklyarova O A. 2013. Infl uence of natural organic acids on the Mg/Ca ratio in the bottom sediments of highly mineralized lakes. Russian Geology and Geophysics, 54 (6): 637-645, http://dx.doi.org/10.1016/j. rgg.2013.04.013 10. Gas'kova O L, Solotchina E P, Sklyarova O A. 2011. Reconstruction of solution chemistry evolution based on the sedimentary record of salt lakes in the Olkhon region. Russian Geology and Geophysics, 52 (5): 548-554, http://dx.doi.org/10.1016/j.rgg.2011.04.007. 11. Hoch A R, Reddy M M, Aiken G R. 2000. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim. Cosmochim. Acta, 64 (1): 61-72. 12. Lash G G, Blood D R. 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Marine and Petroleum Geology, 57: 244-263, http://dx.doi. org/10.1016/j.marpetgeo.2014.06.001 13. Lein A Yu.; Makkaveev P N, Savvichev A S, Kravchishina M D, Belyaev N A, Dara O M, Ponyaev M S, Zakharova E E, Rozanov A G, Ivanov M V, Flin M V. 2011. Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011. Oceanology, 53 (5): 570-606, http://link.springer.com/article/10.1134%2FS0001437013050081 14. Leonova G A, Bobrov V A. 2012. Geochemical Role of Plankton of the Continental Water Bodies of Siberia in Concentrating and Biosedimentation of Microelements. Academic Publishing House "GEO", Novosibirsk, 314p 15. Moiseenko T I, Gashkina N A, Dinu M I, Kremleva T A, Khoroshavin V Y. 2013a. Aquatic geochemistry of small lakes: eff ects of environment changes. Geochem. Int., 51 (13): 1 031-1 148, http://dx.doi.org/10.1134%2FS00167 02913130028#/page-1 16. Moiseenko T I, Gashkina N A, Kudryavtseva L P, Bylinyak Y A, Sandimirov S S. 2006. Zonal features of the formation of water chemistry in small lakes in European Russia. Water Resources, 33 (2): 144-162, http://dx.doi.org/10. 1134/S0097807806020047. 17. Moiseenko T I, Skjelkvåle B L, Gashkina N A, Shalabodov A D, Khoroshavin V Y. 2013b. Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: eff ects of air pollution and climate change. Applied Geochemistry, 28: 69-79, http://dx.doi. org/10.1016/j.apgeochem.2012.10.019 18. Plancq J, Grossi V, Pittet B, Huguet C, Rosell-Melé A, Mattioli E. 2015. Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily). Earth and Planetary Science Letters, 420: 30-44, http://dx.doi.org/10.1016/j.epsl.2015.03.031. 19. Reed D C, Slomp C P, de Lange G J. 2011. A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochim. Cosmochim. Acta, 75 (19): 5 540-5 558, http://dx.doi.org/10.1016/j.gca.2011.07.002. 20. Römkens P F A M, Dolfi ng J. 1998. Eff ect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol., 32 (3): 363-369. 21. Shvarov Y V. 2008. HCh: new potentialities for the thermodynamic simulation of geochemical systems off ered by Windows. Geochem. Int., 46 (8): 834-839, http://dx.doi.org/10.1134/S0016702908080089 22. Strakhovenko V D, Ovdina E A, Ermolaeva N I, Zarubina E Yu, Taran O P, Boltenkov V V. Assessing the role of organic matter in precipitation of authigenic minerals in sediments of the Barchin and Kambala Lakes (Baraba Steppe). Water-Rock Interaction: Geological Evolution.//Proceedings of the Second Russian Scientifi c Conference with International Participation. Vladivostok, 2015. p.616-619. (in Russian) 23. Strakhovenko V D, Shcherbov B L, Malikova I N, Vosel Y S. 2010. The regularities of distribution of radionuclides and reare-earth elements in bottom sediments of Siberian lakes. Russian Geology and Geophysics, 51 (11): 1 167-1 178. 24. Strakhovenko V D, Taran O P, Ermolaeva N I. Geochemical characteristics of the sapropel sediments of small lakes in the Ob'-Irtysh interfl uve.//Russian Geology and Geophysics, 2014. 55 (10): 1160-1169, http://dx.doi.org/10.1016/j.rgg.2014.09.002. 25. Strakhovenko V D. 2011. Geochemistry of Bottom Sediments in the Small Continental Lakes of Siberia. Extended Abstract Doctoral (Geol.-Mineral.) Dissertation. IGM SORAN, Novosibirsk (in Russian), 32p. 26. Tachikawa K, Vidal L, Cornuault M, Garcia M, Pothin A, Sonzogni C, Bard E, Menot G, Revel M. 2015. Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition. Climate of the Past, 11 (6): 855-867 27. Yan J P, Hinderer M, Einsele G. 2002. Geochemical evolution of closed-basin lakes: general model and application to Lakes Qinghai and Turkana. Sedimentary Geology, 148 (1-2): 105-122. 28. Yermolaeva N I, Zarubina E Y, Romanov R E, Leonova G A, Puzanov A V. Hydrobiological conditions of sapropel formation in Lakes in the South of Western Siberia.//Water Resources. 2016. 43 (1): 129-140. 29. Zavarzin G A. 2006. Does evolution make the essence of biology? Herald of the//Russian Academy of Sciences, 76 (3): 292-302.