Инд. авторы: Meleshko S.V., Grigoriev Y.N., Karnbanjong A., Suriyawichitseranee A.
Заглавие: Invariant solutions in explicit form of the Boltzmann equation with a source term
Библ. ссылка: Meleshko S.V., Grigoriev Y.N., Karnbanjong A., Suriyawichitseranee A. Invariant solutions in explicit form of the Boltzmann equation with a source term // Journal of Physics: Conference Series. - 2017. - Vol.894. - Iss. 1. - Art.012063. - ISSN 1742-6588. - EISSN 1742-6596.
Внешние системы: DOI: 10.1088/1742-6596/894/1/012063; РИНЦ: 31036752; SCOPUS: 2-s2.0-85033227638; WoS: 000437964500063;
Реферат: eng: This paper is devoted to applications of the group analysis method to the Boltzmann equation with a source function. Exact solutions of the nonlinear kinetic Boltzmann equation with a source function in the case of an isotropic distribution function and Maxwell model of isotropic scattering were constructed. An equivalence Lie group is used for the construction. One of the transformations of the equivalence Lie group uniquely singles out a class of source functions which allows us to find invariant solutions of the Bobylev-Krook-Wu type in an explicit form. In particular, some of these solutions have a meaningful physical interpretation.
Ключевые слова: Source functions; Physical interpretation; Nonlinear kinetics; Isotropic scattering; Isotropic distributions; Invariant solutions; Exact solution; Nonlinear equations; Maxwell equations; Lie groups; Hydrodynamics; Functions; Fluid dynamics; Equivalence classes; Distribution functions; Continuum mechanics; Equivalence lie groups; Boltzmann equation;
Издано: 2017
Физ. характеристика: 012063
Конференция: Название: All-Russian Conference with International Participation on Modern Problems of Continuum Mechanics and Explosion Physics: Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS
Аббревиатура: MPCMEP 2017
Город: Novosibirsk
Страна: Russia
Даты проведения: 2017-09-04 - 2017-09-08
Цитирование: 1. Chapman S and Cowling T G 1952 The Mathematical Theory of Non-uniform Gases (Cambridge: The Cambridge University Press) 2. Spiga G 1984 Phys. Fluids 27 2599-600 3. Boffi V C and Spiga G 1982 J. Math. Phys. 23 2299-303 4. Boffi V C and Spiga G 1982 Phys. Fluids 25 1987-92 5. Ovsiannikov L V 1978 Group Analysis of Differential Equations (Moscow: Nauka) 6. Nonenmacher T F 1984 J. Appl. Math. Phys. (ZAMP) 35 680-91 7. Krook M and Wu T T 1976 Phys. Rev. Lett. 36 1107-9 8. Grigoriev Y N, Meleshko S V and Suriyawichitseranee A 2014 Int. J. Non-Linear Mech. 61 15-8 9. Bobylev A V 1975 Dokl. Akad. Nauk SSSR 225 1041-4 10. Suriyawichitseranee A, Grigoriev Y and Meleshko S 2015 Commun. Nonlinear Sci. Numer. Simul. 20 719-30 11. Long F S, Karnbanjong A, Suriyawichitseranee A, Grigoriev Y N and Meleshko S V 2017 Commun. Nonlinear Sci. Numer. Simulat. 48 350-60 12. Akhatov I S, Gazizov R K and Ibragimov N H 1991 J. Math. Sci. 55 1401-50 13. Ibragimov N H, Torrisi M and Valenti A 1991 J. Math. Phys. 32 2988-95 14. Dos Santos Cardoso-Bihlo E, Bihlo A and Popovych R O 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3622-38 15. Grigoriev Y N and Meleshko S V 1987 Dokl. AS USSR 297 323-7 16. Bobylev A V 1975 Dokl. AS USSR 225 1296-9 17. Grigoriev Y N, Meleshko S V and Suriyawichitseranee A 2017 J. Appl. Mech. Tech. Phys. In press 18. Santos A and Brey J J 1985 Phys. Fluids 29 1750