Инд. авторы: | Golushko S.K., Semisalov B.V. |
Заглавие: | On the various approaches to modeling and analysis of deformation of anisogrid structures |
Библ. ссылка: | Golushko S.K., Semisalov B.V. On the various approaches to modeling and analysis of deformation of anisogrid structures // Zbornik radova konferencije MIT 2013. - 2014: University of Pristina. - P.243-250. - ISBN: 978-86-80795-20-1. |
Внешние системы: | РИНЦ: 36599437; |
Реферат: | eng: We consider a class of anisogrid structures that are grid shells made of unidirectional carbon. A brief analysis of existing approaches to modeling of deformation of grid structures is performed. A model of anisogrid structure based on the continuum approach was studied. This model is a set of non-stationary PDE's with small parameters describing a three-dimensional stress-strain state of continuum analog of grid structure. We posed for it the initial boundary value problem specifying stresses on the boundary of structure. For solving this problem an algorithm based on approximation without saturation was built. |
Издано: | 2014 |
Физ. характеристика: | с.243-250 |
Конференция: | Название: Международная конференция «Математические и информационные технологии» Аббревиатура: MIT-2013 Город: Врньячка Баньа, Будва Страна: Сербия, Черногрия Даты проведения: 2013-09-05 - 2013-09-14 Ссылка: http://conf.nsc.ru/MIT-2013 |
Цитирование: | 1. Vasiliev V. V, Barynin V.A., Razin A. F. Petrokovsky S. A., Halimanovich V. I. Anisogrid composite grid structures -development and application in space technology//Composites and nanostructures. 2009. No. 3. P. 38-50 (in Russian). 2. Obraztsov J. F., Rybakov L. S., Mishustin I. V. Deformation-analysis methods for elastic spaceframe systems of regular structure.//J. on composite mechanics and design. Vol. 2. No.2. 1996. P. 3-14. 3. Shulkin Ju. B. Theory of elastic framed structures. M: Nauka. 1984. 272 p (in Russian). 4. Levin A. Some problems on regular bar systems.//Proceedings of the universities. Construction and architecture. No. 9; 1965. P. 41-48 (in Russian). 5. Rybakov L. S. On the theory of a plane regular elastic structure of framework type.//Mechanics of Solids. No. 5. 1995. P. 171-179. 6. Dean D. L., GangaRao H. V. S. Macro approach to discrete field analysis.//J. Eng. Mech. Div., ASCE. Vol. 96. No. EM4. 1970. P. 377-394. 7. Azarov A. V. Continuum and discrete models of lattice composite cylindrical shells.//J. on composite mechanics and design. Vol. 18. No. 1. 2012. P. 121-130. 8. Bazant Z. P., Christensen M. Analogy between micropolar continuum and grid frameworks under initial stress.//Int. J. Solids and Struct. Vol. 8. No. 3. 1972. P. 327-346. 9. Bunakov V. A., Protasov V. D. Cylindrical reticular composite shells//Mechanics of composite materials. No. 6. 1989. P. 1046-1053. 10. Bahvalov N.S., Panasenko G.P Averaging processes in periodic media. Mathematical problems of the mechanics of composite materials. M: Nauka. 1984. 352p (in Russian). 11. Vlasov A.N. Averaging of mechanical properties of structurally inhomogeneous media//J. on composite mechanics and design. Vol. 10. No. 3. 2004. P. 424-441. 12. Altufov N. A., Popov B. G. Continuous models of regular trusses.//Mechanics of Solids. No. 6. 1994. P. 146-154. 13. Vasiliev V.V., Morozov E.V. Advanced Mechanics of Composite Materials.Elsevier. 2007. 491 p. 14. Mityushov E. A. The theory of reinforcement.//J. on composite mechanics and design. V.6. No. 2. 2000. P. 151-161. 15. Svistkov A. L., Evlampieva S. E. Using a smoothing averaging operator to evaluate macroscopic parameters in structurally in-homogeneous materials.//J. Applied Mechanics and Technical Physics. Vol. 44. No. 5. 2003. P. 151-161. 16. Babenko K.I. Fundamentals of numerical analysis. Moscow-Izhevsk, Regular and chaotic dynamics 2002 (in Russian). 17. Blokhin A. M., Ibragimova A. S., Semisalov В. V. Design of numerical algorithm for the system of moment equations describing the process of charge transport in semiconductors.//Math. mod. Vol. 21. No. 4. 2009. P. 15-34 (in Russian). |