Инд. авторы: | Pestunov I.A., Rylov S.A., Sinyavskiy Yu.N., Berikov V.B. |
Заглавие: | Computationally efficient methods of clustering ensemble construction for satellite image segmentation |
Библ. ссылка: | Pestunov I.A., Rylov S.A., Sinyavskiy Yu.N., Berikov V.B. Computationally efficient methods of clustering ensemble construction for satellite image segmentation // CEUR Workshop Proceedings. - 2017. - Vol.1901. - P.194-200. - ISSN 1613-0073. |
Внешние системы: | РИНЦ: 31047679; SCOPUS: 2-s2.0-85029327861; |
Реферат: | eng: Combining multiple partitions into single ensemble clustering solution is a prominent way to improve accuracy and stability of clustering solutions. One of the major problems in constructing clustering ensembles is high computational complexity of the common methods. In this paper two computationally efficient methods of constructing ensembles of nonparametric clustering algorithms are introduced. They are based on the use of co-association matrix and subclusters. The results of experiments on synthetic and real datasets confirm their effectiveness and show the stability of the obtained solutions. The performance of the proposed methods allows to process large images including multispectral satellite data. |
Ключевые слова: | Image processing; Computational efficiency; Cluster analysis; Cobalt compounds; Image segmentation; Nanotechnology; Clustering algorithms; Non-parametric; Multispectral satellite data; Multispectral images; Ensemble clustering; Ensemble; Computationally efficient; Co-association matrix; Clustering solutions; Security of data; Nonparametric clustering algorithm; Multispectral image segmentation; Ensemble; Co-association matrix; |
Издано: | 2017 |
Физ. характеристика: | с.194-200 |
Конференция: | Название: Информационные технологии и нанотехнологии Аббревиатура: ИТНТ-2017 Город: Самара Даты проведения: 2017-04-25 - 2017-04-27 |
Цитирование: | 1. Gonzalez RC, Woods RE. Digital image processing. Moscow: Tekhnosphera, 2006; 812 p. (in Russian) 2. Dey V, Zhang Y, Zhong M. A review on image segmentation techniques with remote sensing perspective. Proceedings of ISPRS TC VII Symposium-100 Years ISPRS. Vienna: ISPRS, 2010; XXXVIII(7A): 31-42. 3. PestunovIA, SinyavskyYuN. Clustering algorithms in problems of segmentation of satellite images. Bulletin KemSU 2012; 52(4/2): 110-125. (in Russian). 4. Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 2010; 31(8): 651-666. 5. Krstinic D, Skelin AK, Slapnicar I. Fast two-step histogram-based image segmentation. Image Processing, IET 2011; 5(1): 63-72. 6. Ghaemi R, Sulaiman M, Ibrahim H, Mustapha N. A survey: clustering ensembles techniques. International Journal of Computer, Electrical, Automation, Control and Information Engineering 2009; 3(2): 365-374. 7. Kashef R, Kamel M. Cooperative clustering. Pattern Recognition 2010; 43(6): 2315-2329. 8. Hore P, Hall LO, Goldgof DB. A scalable framework for cluster ensembles. Pattern Recognition 2009; 42(5): 676-688. 9. Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 2003; 3: 583-617. 10. Jia J, Liu B, Jiao L. Soft spectral clustering ensemble applied to image segmentation. Frontiers of Computer Sciense in China 2011; 5(1): 66-78. 11. Franek L, Jiang X. Ensemble clustering by means of clustering embedding in vectorspaces. Pattern Recognition 2014; 47(2): 833-842. 12. Filkov V, Skiena S. Integrating microarray data by consensus clustering. International Journal on Artificial Intelligence Tools 2004; 13(4): 863-880. 13. Tasdemir K, Moazzen Y, Yildirim I. An approximate spectral clustering ensemble for high spatial resolution remote-sensing images. IEEE Journal, Selected Topics in Applied Earth Observations and Remote Sensing 2015; 8(5): 1996-2004. 14. Berikov V, Pestunov I. Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties. Pattern Recognition 2017; 63: 427-436. 15. Berikov VB. Construction of an ensemble of decision trees in the cluster analysis. Computational Technologies 2010; 15(1): 40-52. (in Russian) 16. Gronau I, Moran S. Optimal implementations of UPGMA and other common clustering algorithms. Information Processing Letters 2007; 104(6): 205-210. 17. Pestunov IA, Berikov VB, Sinyavskiy YuN. Segmentation of multispectral images based on an ensemble of nonparametric clustering algorithms. Vestnik SibGAU 2010; 5(31): 56-64. (in Russian) 18. Pestunov IA, Rylov SA, Berikov VB. Hierarchical clustering algorithms for segmentation of multispectral images. Optoelectronics, Instrumentation and Data Processing 2015; 51(4): 329-338. 19. Pestunov IA, Kulikova EA, Rylov SA, Berikov VB. Ensemble of clustering algorithms for large datasets. Optoelectronics, Instrumentation and Data Processing 2011; 47(3): 245-252. 20. Rylov SA. Model datasets. URL: https://drive.google.com/open?id=0ByK9GtU5ExExRnZwdFNmRHRWdFk (30.05.2017). 21. A Matlab Toolbox for Pattern Recognition. URL: http://www.prtools.org (30.05.2017). 22. Schubert E, Koos A, Emrich T, Züfle A, Schmid KA, Zimek A. A framework for clustering uncertain data. Proceedings of the VLDB Endowment 2015; 8(12): 1976-1979. 23. Image datasets for clustering. URL: https://drive.google.com/open?id=0ByK9GtU5ExExWXpGRjU5WVFHcDg (30.05.2017). |