Инд. авторы: Astrakov S.N., Golushko S.K., Korolenko L.A.
Заглавие: Isoepiphanic shapes of high-pressure vessels
Библ. ссылка: Astrakov S.N., Golushko S.K., Korolenko L.A. Isoepiphanic shapes of high-pressure vessels // Journal of Applied and Industrial Mathematics. - 2017. - Vol.11. - Iss. 3. - P.305-311. - ISSN 1990-4789. - EISSN 1990-4797.
Внешние системы: DOI: 10.1134/S1990478917030012; РИНЦ: 31080347; SCOPUS: 2-s2.0-85028551961;
Реферат: eng: We consider the generalized statements of the problems of optimization of geometric shapes for simple and complex domains under given constraints. Along with the condition of minimization of the domain boundary, some additional constraints are introduced on the pointwise or contour “fastening” of the domain. The obtained results can be used for optimal design of high-pressure tanks and vessels, including the multisection ones. © 2017, Pleiades Publishing, Ltd.
Ключевые слова: pressure vessels; the minimum weight; Industrial engineering; Industry; Complex domains; Domain boundary; Geometric shape; High-pressure tanks; High-pressure vessel; Pressure vessels; Optimal design; Minimum weight; Isoperimetric problem; isoepiphanic and isoperimetric problems;
Издано: 2017
Физ. характеристика: с.305-311
Цитирование: 1. S. K. Golushko, “The Analysis of Behaviour of Multilayered Nodoid Shells on the Basis of Nonclassical Theory,” in Computational Science and High Performance Computing II: 2nd Russian-German Advanced Research Workshop, Ed. by E. Krause, Yu. Shokin, M. Resch, and N. Shokina (Springer, Berlin, 2005), pp. 205–216. 2. S. K. Golushko and Yu. V. Nemirovskii, Direct and Inverse Problems in Mechanics of Elastic Composite Plates and Rotation Shells (Fizmatlit, Moscow, 2008) [in Russian]. 3. I. M. Yaglomand V. G. Boltyanskii, Convex Figures (Gostekhizdat, Moscow, 1951) [in Russian]. 4. L. Fejes Tot, Lagerungen in der Ebene auf der Kugel und im Raum (Springer, Berlin, 1953; Fizmatlit, Moscow, 1958). 5. D. A. Kryzhanovskii, Isoperimetric Problem: Maximal and Minimal Properties of Geometric Figures (Editorial URSS, Moscow, 2010) [in Russian]. 6. Ya. S. Pul’pinskii, Mathematical Modeling of Rotation Shells of Complex Forms, Candidate’s Dissertation in Technical Sciences (Gos. Univ. Arkhitekt. Stroit., Penza, 2006). 7. S. S. Kutateladze, “Three Unavoidable Problems,” Vladikavkaz. Mat. Zh. 8 (1), 40–52 (2006). 8. S. S. Kutateladze, “Multiobjective Problems of Convex Geometry,” Sibirsk. Mat. Zh. 50 (5), 1123–1136 (2009) [Siberian Math. J. 50 (5), 887–897 (2009)]. 9. A. V. Pogorelov, “Imbedding a ‘Soap Bubble’ into a Tetrahedron,” Mat. Zametki 56 (2), 90–93 (1994) [Math. Notes 56 (2), 824–826 (1994)]. 10. W. Tamm and I. Ballinger, “Conceptual Design of Space Efficient Tanks,” АIAA, 2006-5058. 11. M. Hutchings, F. Morgan, M. Ritore, and A. Ros, “Proof of the Double Bubble Conjecture,” Ann. Math. No. 155, 459–489 (2002). 12. S. N. Astrakov and S. K. Golushko, “Design of Multisection Pressure Tanks,” in Abstracts of International Conference “Advanced Mathematics, Computations, and Applications-2014,” Novosibirsk, June 8–11, 2014 (Inst. Mat. Model. Mat. Geofiz., Novosibirsk, 2014), p. 73. 13. L. A. Korolenko and S. N. Astrakov, “Kelvin Problem on Partitioning Bounded Figures,” in Abstracts of International Conference “Advanced Mathematics, Computations, and Applications-2014,” Novosibirsk, June 8–11, 2014 (Inst. Mat. Model. Mat. Geofiz., Novosibirsk, 2014), p. 97. 14. Plateau J. A. F. Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires. Paris: Gauthier-Villars, 1873. 15. J. E. Taylor, “The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces,” Anal. Math. No. 103, 489–539 (1967). 16. K. Brakke, “The Surface Evolver,” Experiment. Math. No. 1, 141–165 (1992). 17. S. J. Cox and S. A. Jones “Instability of Stretched and Twisted Soap Films in a Cylinder,” J. Engrg. Math. No. 86, 1–7 (2004). 18. S. J. Cox, D. Weaire, and M. F. Vaz, “The Transition from Two-Dimensional to Three-Dimensional Foam Structures,” Europ. Phys. J. E, No. 7, 311–315 (2002).