Цитирование: | 1. S. K. Golushko, “The Analysis of Behaviour of Multilayered Nodoid Shells on the Basis of Nonclassical Theory,” in Computational Science and High Performance Computing II: 2nd Russian-German Advanced Research Workshop, Ed. by E. Krause, Yu. Shokin, M. Resch, and N. Shokina (Springer, Berlin, 2005), pp. 205–216.
2. S. K. Golushko and Yu. V. Nemirovskii, Direct and Inverse Problems in Mechanics of Elastic Composite Plates and Rotation Shells (Fizmatlit, Moscow, 2008) [in Russian].
3. I. M. Yaglomand V. G. Boltyanskii, Convex Figures (Gostekhizdat, Moscow, 1951) [in Russian].
4. L. Fejes Tot, Lagerungen in der Ebene auf der Kugel und im Raum (Springer, Berlin, 1953; Fizmatlit, Moscow, 1958).
5. D. A. Kryzhanovskii, Isoperimetric Problem: Maximal and Minimal Properties of Geometric Figures (Editorial URSS, Moscow, 2010) [in Russian].
6. Ya. S. Pul’pinskii, Mathematical Modeling of Rotation Shells of Complex Forms, Candidate’s Dissertation in Technical Sciences (Gos. Univ. Arkhitekt. Stroit., Penza, 2006).
7. S. S. Kutateladze, “Three Unavoidable Problems,” Vladikavkaz. Mat. Zh. 8 (1), 40–52 (2006).
8. S. S. Kutateladze, “Multiobjective Problems of Convex Geometry,” Sibirsk. Mat. Zh. 50 (5), 1123–1136 (2009) [Siberian Math. J. 50 (5), 887–897 (2009)].
9. A. V. Pogorelov, “Imbedding a ‘Soap Bubble’ into a Tetrahedron,” Mat. Zametki 56 (2), 90–93 (1994) [Math. Notes 56 (2), 824–826 (1994)].
10. W. Tamm and I. Ballinger, “Conceptual Design of Space Efficient Tanks,” АIAA, 2006-5058.
11. M. Hutchings, F. Morgan, M. Ritore, and A. Ros, “Proof of the Double Bubble Conjecture,” Ann. Math. No. 155, 459–489 (2002).
12. S. N. Astrakov and S. K. Golushko, “Design of Multisection Pressure Tanks,” in Abstracts of International Conference “Advanced Mathematics, Computations, and Applications-2014,” Novosibirsk, June 8–11, 2014 (Inst. Mat. Model. Mat. Geofiz., Novosibirsk, 2014), p. 73.
13. L. A. Korolenko and S. N. Astrakov, “Kelvin Problem on Partitioning Bounded Figures,” in Abstracts of International Conference “Advanced Mathematics, Computations, and Applications-2014,” Novosibirsk, June 8–11, 2014 (Inst. Mat. Model. Mat. Geofiz., Novosibirsk, 2014), p. 97.
14. Plateau J. A. F. Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires. Paris: Gauthier-Villars, 1873.
15. J. E. Taylor, “The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces,” Anal. Math. No. 103, 489–539 (1967).
16. K. Brakke, “The Surface Evolver,” Experiment. Math. No. 1, 141–165 (1992).
17. S. J. Cox and S. A. Jones “Instability of Stretched and Twisted Soap Films in a Cylinder,” J. Engrg. Math. No. 86, 1–7 (2004).
18. S. J. Cox, D. Weaire, and M. F. Vaz, “The Transition from Two-Dimensional to Three-Dimensional Foam Structures,” Europ. Phys. J. E, No. 7, 311–315 (2002).
|