Инд. авторы: | Grebenev V.N., Wacławczyk M., Oberlack M. |
Заглавие: | Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence |
Библ. ссылка: | Grebenev V.N., Wacławczyk M., Oberlack M. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence // Journal of Physics A: Mathematical and Theoretical. - 2017. - Vol.50. - Iss. 43. - Art.435502. - ISSN 1751-8113. - EISSN 1751-8121. |
Внешние системы: | DOI: 10.1088/1751-8121/aa8c69; РИНЦ: 31082745; SCOPUS: 2-s2.0-85031008431; WoS: 000412212200002; |
Реферат: | eng: We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf's) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Backlund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a 'local scaling' and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8). © 2017 IOP Publishing Ltd.
|
Ключевые слова: | vorticity field; symmetry analysis; conformal invariance of zero-vorticity isolines; 2D turbulence; LundgrenMonin-Novikov chain of equations; |
Издано: | 2017 |
Физ. характеристика: | 435502 |
Цитирование: | 1. Falkovich G 2007 Conformal invariance in hydrodynamic turbulence Russian Math. Surv. 63 497-510
2. Bernard D, Boffetta G, Celani A and Falkovich G 2006 Conformal invariance in two-dimensional turbulence Nat. Phys. 2 124-8
3. Polyakov A M 1993 The theory of turbulence in two dimensions Nucl. Phys. B 396 367-85
4. Cardy J 2006 The power of two dimensions Nat. Phys. 6 67-8
5. Belavin A A, Polyakov A M and Zamolodchikov A A 1984 Conformal field theory Nucl. Phys. B 241 333-80
6. Wilson K 1971 Renormalization group and critical phenomenon Phys. Rev. B 4 3184-205
7. Falkovich G and Musacchio S 2010 Conformal invariance in inverse turbulent cascades (arXiv:1012.3868)
8. Schramm O 2000 Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 118 221-88
9. Bernard D, Boffetta G, Celani A and Falkovich G 2007 Inverse turbulent cascades and conformally invariant curves Phys. Rev. Lett. 98 024501-4
10. Falkovich G 2009 Symmetries of the turbulent state J. Phys. A: Math. Theor. 42 123001-19
11. Friedrich R, Daitche A, Kamps O, Lülff J, Michel Voß kuhle M and Wilczek M 2012 The Lundgren-Monin-Novikov hierarchy: kinetic equations for turbulence C. R. Phys. 13 929-53
12. Ovsynnikov L V 1978 Group Analysis of Differential Equations (Moscow: Nauka)
13. Grigoriev Y N, Ibragimov N H, Kovalev V F and Meleshko S V 2010 Symmetries of Integro-Differential Equations: with Applications in Mechanics and Plasma Physics (New York: Springer)
14. Ibragimov N H, Kovalev V F and Pustovalov V V 2002 Symmetries of integro-differential equations: a survey of methods illustrated by the Benny equations Nonlinear Dyn. 28 135-53
15. Özer T 2005 Symmetry group analysis of Benney system and an application for shallow-water equations Mech. Res. Commun. 32 241-54
16. Ibragimov N H 2009 Symmetries of integro-differential equations Approximate and Renormgroup Symmetries (Nonlinear Physical Science) (Berlin: Springer)
17. Roberts D 1985 The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations J. Plasma Phys. 33 219-36
18. Grigoryev Yu N and Meleshko S V 1990 Group theoretical analysis of the kinetic Boltzmann equation and its models Arch. Mech. 42 693-701
19. Wacławczyk M, Grebenev V N and Oberlack M 2017 Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multipoint probability density functions of turbulent flow J. Phys. A: Math. Theor. 50 175502
20. Wacławczyk M, Staffolani N, Oberlack M, Rosteck A, Wilczek M and Friedrich R 2014 Statistical symmetries of the Lundgren-Monin-Novikov hierarchy Phys. Rev. E 90 013022
21. Hopf E 1952 Statistical hydromechanics and functional calculus J. Ration. Mech. Anal. 1 87-123
22. Wacławczyk M and Oberlack M 2013 Application of the extended Lie group analysis to the Hopf functional formulation of the Burgers equation J. Math. Phys. 54 072901
23. Novikov E A 1968 Kinetic equations for a vortex field Sov. Phys. - Dok. 12 1006-8
24. Kovalev V F, Krivenko S V and Pustovalov V V 1992 Group symmetry of the kinetic equations of the colisionless plasma JETP Lett. 55 256-9
25. Fushchych W and Boyko V 1997 Continuity equation in nonlinear quantum mechanics and the Galilei principle J. Nonlinear Math. Phys. 1-2 124-8
26. Boyko V 2000 On Galilei invariance of continuity equation Proc. Inst. Math. NAS Ukraine 30 99-102
27. Zawistowski Z J 2001 Symmetries of integro-differential equations Rep. Math. Phys. 48 269-75
28. Schottenloher M 2008 A Mathematical Introduction to Conformal Field Theory (Lecture Notes in Physics vol 759) 2nd edn (Berlin: Springer)
29. Bowman J 2013 Casimir cascades in two-dimensional turbulence J. Fluid Mech. 729 364-76
30. Bihlo A and Popovych R O 2009 Lie symmetries and exact solutions of the barotropic vorticity equation J. Math. Phys. 50 102-23
31. Megrabov A G 2003 Group spliting and lax representation Dokl. Math. 67 335-49
32. Grebenev V N, Oberlack M and Grishkov A N 2013 Infinite dimensional Lie algebra associated with the two-point velocity correlation tensor from isotropic turbulence Z. Angew. Math. Phys. 64 599-620
33. Ibragimov N H 1994 CRC Handbook of Lie Group Analysis of Differential Equations (Symmetries, Exact Solutions and Conservation Laws vol 1) (Boca Raton, FL: CRC Press)
|