Инд. авторы: | Proskura A.L., Ratushnyak A.S., Vechkapova S.O., Zapara T.A. |
Заглавие: | Synapse as a Multi-component and Multi-level Information System |
Библ. ссылка: | Proskura A.L., Ratushnyak A.S., Vechkapova S.O., Zapara T.A. Synapse as a Multi-component and Multi-level Information System // Studies in Computational Intelligence. - 2018. - Vol.736. - P.186-192. - ISSN 1860-949X. |
Внешние системы: | DOI: 10.1007/978-3-319-66604-4_27; РИНЦ: 31039562; SCOPUS: 2-s2.0-85029210556; WoS: 000447332900027; |
Реферат: | eng: Synapse, as it is known, consists of presynaptic and postsynaptic parts. In many brain cells, particularly in the cortex and the hippocampus, a postsynaptic part presents a small membrane protrusion on the surface of the dendrite - a dendritic spine. The dendritic spine is partly an isolated structure, but it is associated functionally with other spines of dendritic shaft as well as through the vesicular system with the soma of neuron. The main task of the spine interactome is not only to receive a signal from a presynaptic cell, but also to react to it by opening/closing the ion channels, thus ensuring its transmission to the axon. The interactome of spine is primarily a detector of environmental signals and through the remodeling of the system of its macro-complexes it recognizes and remembers the pattern of the signal. © 2018, Springer International Publishing AG. |
Ключевые слова: | AMPA — and NMDA-type receptors; Interactome; Modulation; Pyramidal neuron; Synapse; |
Издано: | 2018 |
Физ. характеристика: | с.186-192 |
Конференция: | Название: XIX Международная конференция «Нейроинформатика 2017» Город: Москва Страна: Россия Даты проведения: 2017-10-02 - 2017-10-06 |
Цитирование: | 1. Lin, L., Shen, S., Jiang, P., Sato, S., Davidson, B.L., Xing, Y.: Evolution of alternative splicing in primate brain transcriptomes. Hum. Mol. Genet. 19(15), 2958–2973 (2010) 2. Penn, A.C., Balik, A., Wozny, C., Cais, O., Greger, I.H.: Activity-mediated AMPA receptor remodeling, driven by alternative splicing in the ligand-binding domain. Neuron 76(3), 503– 510 (2012) 3. Barbosa-Morais, N.L., Irimia, M., Pan, Q., et al.: The evolutionary landscape of alternative splicing in vertebrate species. Science 338(6114), 1587–1593 (2012) 4. Sherrington, C.S.: Man on His Nature, p. 444. Cambridge University Press, Cambridge (1942) 5. Uexküll, J.V.: Theoretical Biology, p. 243. Harcourt, Brace and Co., New York (1926) 6. Anokhin, P.K.: Systems analysis of the integrative activity of the neuron. Pavlov. J. Biol. Sci. 19(2), 43–101 (1974) 7. Fuster, J.M.: Cortex and memory: emergence of a new paradigm. J. Cogn. Neurosci. 21(11), 2047–2072 (2009) 8. Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A.A., Sacktor, T.C.: Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790), 1141–1144 (2006) 9. Ratushnyak, A.S., Zapara, T.A.: Principles of cellular-molecular mechanisms underlying neuron functions. J. Integr. Neurosci. 8(4), 453–469 (2009) 10. De Koninck, P., Schulman, H.: Sensitivity of CaM kinase II to the frequency of Ca2+ os-cillations. Science 279(5348), 227–230 (1998) 11. Potter, W.B., O’Riordan, K.J., Barnett, D., Osting, S.M., Wagoner, M., Burger, C., Roopra, A.: Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS ONE 5 (2), e8996 (2010). doi:10.1371/journal.pone.0008996 12. Wang, G., Gilbert, J., Man, H.Y.: AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades. Neural Plast. (2012). doi:10.1155/2012/825364 13. Aur, D., Mandar, J., Poznanski, R.R.: Computing by physical interaction in neurons. J. Integr. Neurosci. 10(4), 413–422 (2011) 14. Cacha, L.A., Poznanski, R.R.: Associable representations as field of influence for dynamic cognitive processes. J. Integr. Neurosci. 10(4), 423–437 (2011) 15. Red’ko, V.G., Mosalov, O.P., Prokhorov, D.V.: A model of evolution and learning. Neural Netw. 18(5–6), 738–745 (2005) 16. Kolpakov, F.A., Ananko, E.A.: Interactive data input into the GeneNet database. Bioinformatics 15(7–8), 713–714 (1999). (2005) 17. Craddock, T., Tuszynski, J.A., Hameroff, S.: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput. Biol. 8(3), e1002421 (2012) 18. Valtschanoff, J.G., Weinberg, R.J.: Laminar organization of the NMDA receptor complex within the postsynaptic density. Neuroscience 21(4), 1211–1217 (2001) 19. Tomita, S., Stein, V., Stocker, T.R., Nicoll, A., Bredt, D.S.: Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45(2), 269–277 (2005) 20. Choi, J., Ko, J., Park, E., Lee, J.R., Yoon, J., Lim, S., Kim, E.: Phosphorylation of stargazin by protein kinase A regulates its interaction with PSD-95. J. Biol. Chem. 277(14), 2359– 12363 (2002) 21. Carlisle, H.J., Manzerra, P., Marcora, E., Kennedy, M.B.: SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J. Neurosci. 28(50), 13673–13683 (2008) 22. Park, E., Na, M., Choi, J., Kim, S., Lee, J.R., Yoon, J., Park, D., Sheng, M., Kim, E.: The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc4. J. Biol. Chem. 278(21), 19220–19229 (2003) 23. Lai, H.C., Jan, L.Y.: The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7(7), 548–562 (2006) 24. Vlachos, A., Maggio, N., Jedlicka, P.: Just in time for late-LTP: a mechanism for the role of pkmzeta in long-term memory. Commun. Integr. Biol. 1(2), 190–191 (2008) 25. Newpher, T.M., Ehlers, M.D.: Glutamate receptor dynamics in dendritic microdomains. Neuron 58(4), 472–497 (2008) 26. Hinners, I., Tooze, S.A.: Changing directions: clathrin-mediated transport between the golgi and endosomes. J. Cell Sci. 116(Pt5), 763–771 (2003) 27. Malakchin, I.A., Proskura, A.L., Zapara, T.A., Ratushnyak, A.S.: Influence of transport vesicles assembly to preserve the effectiveness of the synaptic transmission Vestnik NGU (Russian), No. 101, pp. 14–20 (2012) 28. Davis, G.W.: Homeostatic control of neural activity: from phenomenology to molecular design. Ann. Rev. Neurosci. 29, 307–323 (2006) 29. Hou, Q., Gilbert, J., Man, H.Y.: Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 72(5), 806–818 (2011) |