Инд. авторы: Чуркин Д.В., Хорев С.В., Ватник И.Д.
Заглавие: Пространственно-временная динамика волоконных лазерных систем (обзор)
Библ. ссылка: Чуркин Д.В., Хорев С.В., Ватник И.Д. Пространственно-временная динамика волоконных лазерных систем (обзор) // Автометрия. - 2017. - Т.53. - № 2. - С.3-18. - ISSN 0320-7102.
Внешние системы: DOI: 10.15372/AUT20170201; РИНЦ: 28982745;
Реферат: rus: Рассматривается новая концепция изучения пространственно-временных режимов генерации в лазерах, при которых в излучении одновременно сосуществуют несколько временных масштабов (один из них связан со временем обхода резонатора). Суть концепции заключается в том, зависимость интенсивности от времени исследуется в двух измерениях, одно из которых соответствует эволюции по последовательным обходам резонатора. Показывается разнообразие пространственно-временных режимов генерации в волоконных лазерах различных типов, например квазинепрерывных лазерах, импульсных лазерах с пассивной и активной сихронизацией мод. Демонстрируется возможность экспериментального детектирования локализованных структур, в том числе солитонов, в излучении волоконных лазеров. Обсуждаются перспективы предложенного подхода.
eng: This paper presents a new concept for studying the spatio-temporal modes of laser generation in which several time scales coexist in the emission (one of which is related to the resonator round-trip time). The essence of the concept is that the time dependence of the intensity is investigated in two dimensions, one of which corresponds to the evolution over sequential resonator round-trips. It is shown that fiber lasers of various types, e.g., quasicontinuous lasers and passive and active mode locked pulsed lasers, has a diversity of spatio-temporal generation modes. The possibility of experimental detection of localized structures, including solitons, in fiber laser radiation is demonstrated. The prospects of the proposed approach are discussed.
Ключевые слова: оптическое гетеродинирование; временнáя динамика; экстремальные события; солитоны; интенсивность генерации; Optical heterodyning; solitons; Temporal dynamics; extreme events; Generation intensity;
Издано: 2017
Физ. характеристика: с.3-18
Цитирование: 1. 1. Sugavanam S., Tarasov N., Churkin D. V. Real-time intensity domain characterization of fibre lasers using spatio-temporal dynamics // Appl. Sci. 2016. 6, Is. 3. P. 65-79. DOI: 10.3390/ app6030065. 2. 2. Arecchi F. T., Giacomelli G., Lapucci A., Meucci R. Two-dimensional representation of a delayed dynamical system // Phys. Rev. A. 1992. 45, Is. 7. P. 4225-4228. DOI: 10.1103/Phys RevA45R4225. 3. 3. Giacomelli G., Meucci R., Politi A., Arecchi F. T. Defects and spacelike properties of delayed dynamical systems // Phys. Rev. Lett. 1994. 73, Is. 8. P. 1099-1102. DOI: 10.1103/ PhysRevLett.73.1099. 4. 4. Dudley J. M., Genty G., Coen S. Supercontinuum generation in photonic crystal fiber // Rev. Mod. Phys. 2006. 78, Is. 4. P. 1135-1184. DOI: 10.1103/RevModPhys.78.1135. 5. 5. Dissipative Solitons: From Optics to Biology and Medicine. Berlin - Heidelberg: Springer-Verlag, 2008. 479 p. Ch.: Temporal soliton "molecules" in mode-locked lasers: Collisions, pulsations, and vibrations /P. Grelu, J. M. Soto-Crespo. P. 137-173. DOI: 10.1007/978-3-540-78217-9_6. 6. 6. Demircan A., Amiranashvili S., Brée C. et al. Rogue events in the group velocity horizon // Sci. Rep. 2012. 2. 850. DOI:10.1038/srep00850. 7. 7. Erkintalo M., Xu Y. Q., Murdoch S. G. et al. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs // Phys. Rev. Lett. 2012. 109, Is. 22. 223904. DOI: 10.1103/PhysRevLett.109.223904. 8. 8. Leo F., Gelens L., Emplit Ph. et al. Dynamics of one-dimensional Kerr cavity solitons // Opt. Express. 2013. 21, Is. 7. P. 9180-9191. DOI: 10.1364/OE.21.009180. 9. 9. Schmidberger M. J., Novoa D., Biancalana F. et al. Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities // Opt. Express. 2014. 22, Is. 3. P. 3045-3053. DOI: 10.1364/OE.22.003045. 10. 10. Avila K., Moxey D., de Lozar A. et al. The onset of turbulence in pipe flow // Science. 2011. 333, Is. 6039. P. 192-196. DOI: 10.1126/science.1203223. 11. 11. Tarasov N., Sugavanam S., Churkin D. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers // Opt. Express. 2015. 23, Is. 19. P. 24189-24194. DOI: 10.1364/OE.23. 024189. 12. 12. Wabnitz S. Optical turbulence in fiber lasers // Opt. Lett. 2014. 39, Is. 6. P. 1362-1365. DOI: 10.1364/OL.39.001362. 13. 13. Wei X., Xu Y., Wong K. K. Y. 1000-1400-nm partially mode-locked pulse from a simple all-fiber cavity // Opt. Lett. 2015. 40, Is. 13. P. 3005-3008. DOI: 10.1364/OL.40.003005. 14. 14. Turitsyna E. G., Smirnov S. V., Sugavanam S. et al. The laminar-turbulent transition in a fibre laser // Nature Photon. 2013. 7. P. 783-786. DOI: 10.1038/nphoton.2013.246. 15. 15. Churkin D. V., Sugavanam S., Tarasov N. et al. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers // Nature Commun. 2015. 6. 7004. DOI: 10.1038/ncomms8004. 16. 16. Horowitz M., Silberberg Y. Control of noiselike pulse generation in erbium-doped fiber lasers // IEEE Photon. Technol. Lett. 1998. 10, Is. 10. P. 1389-1391. 17. 17. Kang J. U. Broadband quasi-stationary pulses in mode-locked fiber ring laser // Opt. Commun. 2000. 182, Is. 4-6. P. 433-436. DOI: 10.1016/S0030-4018(00)00850-6. 18. 18. Zhao L. M., Tang D. Y., Cheng T. H. et al. 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser // Opt. Commun. 2008. 281, Is. 1. P. 157-161. DOI: 10.1016/j.optcom.2007.09.006. 19. 19. Kobtsev S., Kukarin S., Smirnov S. et al. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers // Opt. Express. 2009. 17, Is. 23. P. 20707-20713. DOI: 10.1364/OE.17.020707. 20. 20. Boucon A., Barviau B., Fatome J. et al. Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser // Appl. Phys. B. 2012. 106, Is. 2. P. 283-287. DOI: 10.1007/s00340-011-4816-5. 21. 21. North T., Rochette M. Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser // Opt. Lett. 2013. 38, Is. 6. P. 890-892. DOI: 10.1364/OL.38.000890. 22. 22. Runge A. F. J., Aguergaray C., Broderick N. G. R., Erkintalo M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers // Opt. Lett. 2013. 38, Is. 21. P. 4327-4330. DOI: 10.1364/OL.38.004327. 23. 23. Santiago-Hernandez H., Pottiez O., Paez-Aguirre R. et al. Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser // Laser Phys. 2015. 25, Is. 4. 045106. DOI: 10.1088/1054-660X/25/4/045106. 24. 24. Santiago-Hernandez H., Pottiez O., Duran-Sanchez M. et al. Dynamics of noise-like pulsing at sub-ns scale in a passively mode-locked fiber laser // Opt. Express. 2015. 23, Is. 15. P. 18840-18849. DOI: 10.1364/OE.23.018840. 25. 25. Suzuki M., Ganeev R. A., Yoneya S., Kuroda H. Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity // Opt. Lett. 2015. 40, Is. 5. P. 804-807. DOI: 10.1364/OL.40.000804. 26. 26. Korobko D. A., Gumenyuk R., Zolotovskii I. O., Okhotnikov O. G. Multisoliton complexes in fiber lasers // Opt. Fiber Technol. 2014. 20, Is. 6. P. 593-609. DOI: 10.1016/j.yofte. 2014.08.011. 27. 27. Jeong Y., Vazquez-Zuniga L. A., Lee S., Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations // Opt. Fiber Technol. 2014. 20, Is. 6. P. 575-592. DOI: 10.1016/j.yofte.2014.07.004. 28. 28. Cheng Z., Li H., Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers // Opt. Express. 2015. 23, Is. 5. P. 5972-5981. DOI: 10.1364/OE.23.005972. 29. 29. Donovan G. Dynamics and statistics of noise-like pulses in modelocked lasers // Physica D: Nonlinear Phenomena. 2015. 309. P. 1-8. DOI: 10.1016/j.physd.2015.07.003. 30. 30. Andral U., Si Fodil R., Amrani F. et al. Fiber laser mode locked through an evolutionary algorithm // Optica. 2015. 2, Is. 4. P. 275-278. DOI: 10.1364/OPTICA.2.000275. 31. 31. Zaytsev A., Lin C.-H., You Y.-J. et al. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers // Opt. Express. 2013. 21, Is. 13. P. 16056-16062. DOI: 10.1364/OE.21.016056. 32. 32. Xia H., Li H., Deng G. et al. Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber // Appl. Opt. 2015. 54, Is. 32. P. 9379-9384. DOI: 10.1364/AO.54.009379. 33. 33. You Y.-J., Wang C., Lin Y.-L. et al. Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses // Laser Phys. Lett. 2015. 13, Is. 2. 025101. DOI: 10.1088/1612-2011/13/2/025101. 34. 34. Kerse C., Kalaycioglu H., Elahi P. et al. Ultrafast micromachining of Cu and Si at ultra-high repetition rates with pulse bursts // Proc. of the 2015 Conf. on Lasers and Electro-Optics/Pacific Rim. Busan, South Korea, 2015. Paper 27E2_4. 35. 35. Kerse C., Yavaş S., Kalaycioglu H. et al. High-speed, thermal damage-free ablation of brain tissue with femtosecond pulse bursts // Proc. of the 2015 Conf. on Lasers and Electro-Optics/Pacific Rim. Busan, South Korea, 2015. Paper 25H3_3. 36. 36. Kalaycioglu H., Akçaalan Ӧ., Yavaş S. et al. Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation // JOSA B. 2015. 32, Is. 5. P. 900-906. DOI: 10.1364/JOSAB.32.000900. 37. 37. Soto-Crespo J. M., Grelu P., Akhmediev N. Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers // Phys. Rev. E. 2011. 84, Is. 1. 016604. DOI: 10.1103/ PhysRevE.84.016604. 38. 38. Lecaplain C., Grelu P., Soto-Crespo J. M., Akhmediev N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser // Phys. Rev. Lett. 2012. 108, Is. 23. 233901. DOI: 10.1103/PhysRevLett.108.233901. 39. 39. Liu M., Cai Z.-R., Hu S. et al. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device // Opt. Lett. 2015. 40, Is. 20. P. 4767-4770. DOI: 10.1364/OL.40.004767. 40. 40. Sugavanam S., Tarasov N., Wabnitz S., Churkin D. V. Ginzburg - Landau turbulence in quasi-CW Raman fiber lasers // Laser & Photon. Rev. 2015. }, Is. 6. P. L35-L39. DOI: 10.1002/ lpor.201500012. 41. 41. Chen S., Soto-Crespo J. M., Grelu P. Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence // Opt. Express. 2014. 22, Is. 22. P. 27632-27642. DOI: 10.1364/OE.22.027632. 42. 42. Chen S., Soto-Crespo J. M., Grelu P. Watch-hand-like optical rogue waves in three-wave interactions // Opt. Express. 2015. 23, Is. 1. P. 349-359. DOI: 10.1364/OE.23.000349. 43. 43. Chen S., Baronio F., Soto-Crespo J. M. et al. Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering // Phys. Rev. A. 2015. 92, Is. 3. 033847. DOI: 10.1103/PhysRevA.92.033847. 44. 44. Kelleher E. J. R., Travers J. C. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers // Opt. Lett. 2014. 39, Is. 6. P. 1398-1401. DOI: 10.1364/OL.39.001398. 45. 45. Woodward R. I., Kelleher E. J. R. Dark solitons in laser radiation build-up dynamics // Phys. Rev. E. 2016. 93, Is. 3. 032221. DOI: 10.1103/PhysRevE.93.032221. 46. 46. Chang W., Soto-Crespo J. M., Vouzas P., Akhmediev N. Spiny solitons and noise-like pulses // JOSA B. 2015. 32, Is. 7. P. 1377-1383. DOI: 10.1364/JOSAB.32.001377. 47. 47. Chouli S., Grelu P. Rains of solitons in a fiber laser // Opt. Express. 2009. 17, Is. 14. P. 11776-11781. DOI: 10.1364/OE.17.011776. 48. 48. Chouli S., Grelu P. Soliton rains in a fiber laser: An experimental study // Phys. Rev. A. 2010. 81, Is. 6. 063829. DOI: 10.1103/PhysRevA.81.063829. 49. 49. Bao C., Xiao X., Yang C. Soliton rains in a normal dispersion fiber laser with dual-filter // Opt. Lett. 2013. 38, Is. 11. P. 1875-1877. DOI: 10.1364/OL.38.001875. 50. 50. Niang A., Amrani F., Salhi M. et al. Rains of solitons in a figure-of-eight passively mode-locked fiber laser // Appl. Phys. B. 2013. 116, Is. 3. P. 771-775. DOI: 10.1007/s00340-014-5760-y. 51. 51. Huang S. S., Wang Y. G., Yan P. G. et al. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion // Laser Phys. Lett. 2014. 11, Is. 2. 025102. DOI: 10.1088/1612-2011/11/2/025102. 52. 52. Cundiff S. T., Soto-Crespo J. M., Akhmediev N. Experimental evidence for soliton explosions // Phys. Rev. Lett. 2002. 88, Is. 7. 073903. DOI: 10.1103/PhysRevLett.88.073903. 53. 53. Latas S. C. V., Ferreira M. F. S. Soliton explosion control by higher-order effects // Opt. Lett. 2010. 35, Is. 11. P. 1771-1773. DOI: 10.1364/OL.35.001771. 54. 54. Akhmediev N., Soto-Crespo J. M. Strongly asymmetric soliton explosions // Phys. Rev. E. 2004. 70, Is. 3. 036613. DOI: 10.1103/PhysRevE.70.036613. 55. 55. Runge A. F. J., Broderick N. G. R., Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser // Optica. 2015. 2, Is. 1. P. 36-39. DOI: 10.1364/OPTICA.2. 000036. 56. 56. Descalzi O., Brand H. R. Transition from modulated to exploding dissipative solitons: Hysteresis, dynamics, and analytic aspects // Phys. Rev. E. 2010. 82, Is. 2. 026203. DOI: 10.1103/PhysRevE.82.026203. 57. 57. Descalzi O., Cartes C., Cisternas J., Brand H. R. Exploding dissipative solitons: The analog of the Ruelle - Takens route for spatially localized solutions // Phys. Rev. E. 2011. 83, Is. 5. 056214. DOI: 10.1103/PhysRevE.83.056214. 58. 58. Cartes C., Descalzi O., Brand H. R. Noise can induce explosions for dissipative solitons // Phys. Rev. E. 2012. 85, Is. 1. 015205. DOI: 10.1103/PhysRevE.85.015205. 59. 59. Akhmediev N. N., Ankiewicz A., Soto-Crespo J. M. Multisoliton solutions of the complex Ginzburg - Landau equation // Phys. Rev. Lett. 1997. 79, Is. 21. P. 4047-4051. DOI: 10.1103/ PhysRevLett.79.4047. 60. 60. Tang D. Y., Man W. S., Tam H. Y., Drummond P. D. Observation of bound states of solitons in a passively mode-locked fiber laser // Phys. Rev. A. 2001. 64, Is. 3. 033814. DOI: 10.1103/PhysRevA.64.033814. 61. 61. Grelu P., Belhache F., Gutty F., Soto-Crespo J. M. Phase-locked soliton pairs in a stretched-pulse fiber laser // Opt. Lett. 2002. 27, Is. 11. P. 966-968. DOI: 10.1364/OL.27. 000966. 62. 62. Stratmann M., Pagel T., Mitschke F. Experimental observation of temporal soliton molecules // Phys. Rev. Lett. 2005. 95, Is. 14. 143902. DOI: 10.1103/PhysRevLett.95.143902. 63. 63. Grapinet M., Grelu P. Vibrating soliton pairs in a mode-locked laser cavity // Opt. Lett. 2006. 31, Is. 14. P. 2115-2117. DOI: 10.1364/OL.31.002115. 64. 64. Liu X. Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers // Phys. Rev. A. 2010. 82, Is. 6. 063834. DOI: 10.1103/PhysRevA.82.063834. 65. 65. Ortaç B., Zaviyalov A., Nielsen C. K. et al. Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser // Opt. Lett. 2010. 35, Is. 10. P. 1578-1580. DOI: 10.1364/OL.35.001578. 66. 66. Zavyalov A., Iliew R., Egorov O., Lederer F. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers // Phys. Rev. A. 2009. 80, Is. 4. 043829. DOI: 10.1103/PhysRevA.80.043829. 67. 67. Zhao L. M., Tang D. Y., Zhang H., Wu X. Bunch of restless vector solitons in a fiber laser with SESAM // Opt. Express. 2009. 17, Is. 10. P. 8103-8108. DOI: 10.1364/OE.17.008103. 68. 68. Song Y. F., Li L., Zhang H. et al. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser // Opt. Express. 2013. 21, Is. 8. P. 10010-10018. DOI: 10.1364/OE.21.010010. 69. 69. Bao C., Chang W., Yang C. et al. Observation of coexisting dissipative solitons in a mode-locked fiber laser // Phys. Rev. Lett. 2015. 115, Is. 25. 253903. DOI: 10.1103/PhysRevLett. 115.253903. 70. 70. Soto-Crespo J. M., Grelu P., Akhmediev N., Devine N. Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs // Phys. Rev. E. 2007. 75, Is. 1. 016613. DOI: 10.1103/PhysRevE.75.016613. 71. 71. Zavyalov A., Iliew R., Egorov O., Lederer F. Discrete family of dissipative soliton pairs in mode-locked fiber lasers // Phys. Rev. A. 2009. 79, Is. 5. 053841. DOI: 10.1103/PhysRevA. 79.053841. 72. 72. Wang L., Liu X., Gong Y. et al. Transitional and steady mode-locking evolution of dissipative solitons // Appl. Opt. 2010. 49, Is. 14. P. 2665-2669. DOI: 10.1364/AO.49.002665. 73. 73. Tsatourian V., Sergeyev S. V., Mou C. et al. Polarisation dynamics of vector soliton molecules in mode locked fibre laser // Sci. Rep. 2013. 3. 3154. DOI: 10.1038/srep03154. 74. 74. Gui L., Xiao X., Yang C. Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser // JOSA B. 2013. 30, Is. 1. P. 158-164. DOI: 10.1364/JOSAB.30.000158. 75. 75. Chen W.-C., Chen G.-J., Han D.-A., Li B. Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber // Opt. Fiber Technol. 2014. 20, Is. 3. P. 199-207. DOI: 10.1016/j.yofte.2014.01.010. 76. 76. Marconi M., Javaloyes J., Barland S. et al. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays // Nature Photon. 2015. 9. P. 450-455. DOI: 10.1038/nphoton.2015.92. 77. 77. Philbin T. G., Kuklewicz C., Robertson S. et al. Fiber-optical analog of the event horizon // Science. 2008. 319, Is. 5868. P. 1367-1370. DOI: 10.1126/science.1153625. 78. 78. Webb K. E., Erkintalo M., Xu Y. et al. Nonlinear optics of fibre event horizons // Nature Commun. 2014. 5. 4969. DOI: 10.1038/ncomms5969. 79. 79. Wang S. F., Mussot A., Conforti M. et al. Bouncing of a dispersive wave in a solitonic cage // Opt. Lett. 2015. 40, Is. 14. P. 3320-3323. DOI: 10.1364/OL.40.003320. 80. 80. Jang J. K., Erkintalo M., Murdoch S. G., Coen S. Ultraweak long-range interactions of solitons observed over astronomical distances // Nature Photon. 2013. 7. P. 657-663. DOI: 10.1038/nphoton.2013.157. 81. 81. Salem R., Foster M. A., Turner A. C. et al. Optical time lens based on four-wave mixing on a silicon chip // Opt. Lett. 2008. 33, Is. 10. P. 1047-1049. DOI: 10.1364/OL.33.001047. 82. 82. Walczak P., Randoux S., Suret P. Optical rogue waves in integrable turbulence // Phys. Rev. Lett. 2015. 114, Is. 14. 143903. DOI: 10.1103/PhysRevLett.114.143903. 83. 83. Haus H. A. Theory of mode locking with a fast saturable absorber // Journ. Appl. Phys. 1975. 46, Is. 7. P. 3049-3058. DOI: 10.1063/1.321997. 84. 84. Eigenwillig C. M., Wieser W., Todor S. et al. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers // Nature Commun. 2013. 4. 1848. DOI: 10.1038/ncomms2870. 85. 85. Suret P., Walczak P., Randoux S. Transient buildup of the optical power spectrum in Raman fiber lasers // Opt. Express. 2013. 21, Is. 2. P. 2331-2336. DOI: 10.1364/OE.21.002331. 86. 86. Turitsyna E. G., Turitsyn S. K., Mezentsev V. K. Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser // Opt. Express. 2010. 18, Is. 5. P. 4469-4477. DOI: 10.1364/OE.18.004469. 87. 87. Smirnov S. V., Tarasov N., Churkin D. V. Radiation build-up in laminar and turbulent regimes in quasi-CW Raman fiber laser // Opt. Express. 2015. 23, Is. 21. P. 27606-27611. DOI: 10.1364/OE.23.027606. 88. 88. Sugavanam S., Fabbri S., Le S. T. et al. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers // Sci. Rep. 2016. 6. 23152. DOI: 10.1038/srep23152. 89. 89. Churkin D. V., Smirnov S. V., Podivilov E. V. Statistical properties of partially coherent cw fiber lasers // Opt. Lett. 2010. 35, Is. 19. P. 3288-3290. DOI: 10.1364/OL.35.003288. 90. 90. Churkin D. V., Smirnov S. V. Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers // Opt. Commun. 2012. 285, Is. 8. P. 2154-2160. DOI: 10.1016/j.optcom.2011.12.082. 91. 91. Gorbunov O. A., Sugavanam S., Churkin D. V. Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements // Opt. Express. 2014. 22, Is. 23. P. 28071-28076. DOI: 10.1364/OE.22.028071. 92. 92. Churkin D. V., Sugavanam S., Vatnik I. D. et al. Recent advances in fundamentals and applications of random fiber lasers // Adv. in Opt. and Photon. 2015. 7, Is. 3. P. 516-569. DOI: 10.1364/AOP.7.000516. 93. 93. Smirnov S. V., Churkin D. V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser // Opt. Express. 2013. 21, Is. 18. P. 21236-21241. DOI: 10.1364/OE.21.021236. 94. 94. Runge A. F. J., Broderick N. G. R., Erkintalo M. Dynamics of soliton explosions in passively mode-locked fiber lasers // JOSA B. 2016. 33, Is. 1. P. 46-53. DOI: 10.1364/JOSAB.33.000046. 95. 95. Lecaplain C., Grelu P. Rogue waves among noiselike-pulse laser emission: An experimental investigation // Phys. Rev. A. 2014. 90, Is. 1. 013805. DOI: 10.1103/PhysRevA.90.013805. 96. 96. Liu Z., Zhang S., Wise F. W. Rogue waves in a normal-dispersion fiber laser // Opt. Lett. 2015. 40, Is. 7. P. 1366-1369. DOI: 10.1364/OL.40.001366. 97. 97. Runge A. F. J., Aguergaray C., Broderick N. G. R., Erkintalo M. Raman rogue waves in a partially mode-locked fiber laser // Opt. Lett. 2014. 39, Is. 2. P. 319-322. DOI: 10.1364/OL.39.000319. 98. 98. Descloux D., Laporte C., Dherbecourt J.-B. et al. Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching // Opt. Lett. 2015. 40, Is. 2. P. 280-283. DOI: 10.1364/OL.40.000280. 99. 99. Aragoneses A., Carpi L., Tarasov N. et al. Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser // Phys. Rev. Lett. 2016. 116, Is. 3. 033902. DOI: 10.1103/PhysRevLett.116.033902. 100. 100. Trebino R., DeLong K. W., Fittinghoff D. N. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating // Rev. Sci. Instrum. 1997. 68, Is. 9. P. 3277-3295.