Инд. авторы: Mikhailuta S.V., Taseiko O.V., Lezhenin A.A., Pitt A.
Заглавие: Urban wind fields: phenomena in transformation
Библ. ссылка: Mikhailuta S.V., Taseiko O.V., Lezhenin A.A., Pitt A. Urban wind fields: phenomena in transformation // Urban Climate. - 2017. - Vol.19. - P.122-140. - ISSN 2212-0955.
Внешние системы: DOI: 10.1016/j.uclim.2016.12.005; РИНЦ: 29473917;
Реферат: eng: This article shows how undisturbed wind streams undergo complex transformations in speed and direction as they interact with different features in various areas of Krasnoyarsk City. Fifteen years of data from urban monitoring stations were collected, averaged and analyzed, and these data show how buildings' layout determines the number of possible wind speeds and directions at specific monitoring points. Wind speeds at some monitoring stations can increase up to 40% as compared to the undisturbed wind flow speed at the meteorological station. But some urban points have 300% more calm periods than at the station outside the city. This paper shows the complete transformation of the undisturbed wind flow caused by non-uniform relief and building arrangements. These results can be used to verify numerical simulation models of air pollution dispersion and to use this information to better parametrize a wide range of problems of wind flows in urban areas.
Ключевые слова: wind speeds; wind directions; Urban wind fields; urban morphology; observations; meteorological station;
Издано: 2017
Физ. характеристика: с.122-140
Цитирование: 1. Bady, M., Kato, S., Takahashi, T., Huang, H., An experimental investigation of the wind environment and air quality within a densely populated urban street canyon. J. Wind Eng. Ind. Aerodyn. 99 (2011), 857–867. 2. Beller, C., Urban Wind Energy. 2011, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi (Risø-PhD; No. 89(EN)). 3. Branis, M., Rezacova, P., Lazaridis, M., The effect of source type and source strength on inhaled mass of particulate matter during episodic indoor activities. Indoor Built Environ. 23 (2014), 1106–1116. 4. Claus, J., Coceal, O., Thomas, T.G., Branford, S., Belcher, S.E., Castro, I.P., Wind-direction effects on urban-type flows. Bound.-Layer Meteorol. 142 (2012), 265–287. 5. Fung, W., Lam, K., Hung, W., Pang, S., Lee, Y., Impact of urban temperature on energy consumption of Hong Kong. Energy 31 (2006), 2623–2637, 10.1016/j.energy.2005.12.009. 6. Gadian, A., Dewsbury, J., Featherstone, F., Levermore, J., Morris, K., Sanders, C., Directional persistence of low wind speed observations. J. Wind Eng. Ind. Aerodyn. 92 (2004), 1061–1074. 7. Gao, Y., Yao, R., Li, B., Turkbeyler, E., Luo, Q., Short, A., Field studies on the effect of built forms on urban wind environments. Renew. Energy 46 (2012), 148–154. 8. Jacobson, M.Z., Fundamentals of atmospheric modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, Cambridge University Press. 9. Kato, S., Huang, H., Ventilation efficiency of void space surrounded by buildings with wind blowing over built-up urban area. J. Wind Eng. Ind. Aerodyn. 97 (2009), 358–367. 10. Kim, H., Urban Form, Wind, Comfort, and Sustainability: The San Francisco Experience. (Doctor of Philosophy Dissertation), 2014, Dept. of City and Regional Planning, University of California, Berkeley www.escholarship.org/uc/item/0h50x0h8. 11. Klimat Krasnoyarska. Leningrad. Gidrometeoizdat, 1982, 232 s. 12. Kolokotroni, M., Giannitsaris, I., Watkins, R., The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 80 (2006), 383–392. 13. Lo Brano, V., Orioli, A., Ciulla, G., Culotta, S., Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 36 (2011), 1026–1039. 14. Memon, R.A., Leung, D.Y.C., Impacts of environmental factors on urban heating. J. Environ. Sci. 22 (2010), 1903–1909, 10.1016/S1001-0742(09)60337-5. 15. Nowak, D.J., Crane, D.E., Stevens, J.C., Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4 (2006), 115–123, 10.1016/j.ufug.2006.01.007. 16. OND-86. Metodika rascheta koncentracij v aimosfernom vozduhe vrednyh veshchestv Soderzhashchihsya v vybrosah predpriyatij OND - 86 - Leningrad Goskomgtdromet 1987, 17s. 17. Plate, E.J., Methods of investigating urban wind fields-physical models. Atmospheric Environment, 1999, Elsevier Science Ltd, 3981–3989. 18. Priyadarsini, R., Hien, W.N., Wai David, C.K., Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island. Sol. Energy 82 (2008), 727–745. 19. Raputa, V.F., Talovskaya, A.V., Kokovkin, V.V., Yazikov, E.G., Analysis of observations of the snow cover pollution by aerosol particles at the territory of Tomsk-city and Seversk-city environments. Opt. Atmos. i Okeana 24 (2011), 74–78. 20. Shahrestani, M., Yao, R., Luo, Z., Turkbeyler, E., Davies, H., A field study of urban microclimates in London. Renew. Energy 73 (2015), 3–9. 21. Shilton, V., Giess, P., Mitchell, D., Williams, C., The relationships between indoor and outdoor respirable particulate matter: meteorology, chemistry and personal exposure. Indoor Built Environ. 11 (2002), 266–274. 22. Simiu, E., Scanlan, R.H., Winds Effects on Structures: Fundamentals and Applications to Design. 1996, Wiley. 23. Taseiko, O.V., Mikhailuta, S.V., Pitt, A., Lezhenin, A.A., Zakharov, Y.V., Air pollution dispersion within urban street canyons. Atmos. Environ. 43 (2009), 245–252, 10.1016/j.atmosenv.2008.09.076. 24. Weather archive, 2016 http://meteo.infospace.ru. 25. WRPLOT View, Version 7.0.0. 2016 https://www.weblakes.com/products/wrplot/index.html. 26. Yang, L., Li, Y., Thermal conditions and ventilation in an ideal city model of Hong Kong. Energy and Buildings, 2011, 1139–1148.