Инд. авторы: | Ларионов П.М., Маслов Н.А., Папаева Е.О., Юношев А.С., Самохин А.Г., Терещенко В.П., Павлов В.В., Титов А.Т. |
Заглавие: | Анализ перфузионных свойств скаффолда |
Библ. ссылка: | Ларионов П.М., Маслов Н.А., Папаева Е.О., Юношев А.С., Самохин А.Г., Терещенко В.П., Павлов В.В., Титов А.Т. Анализ перфузионных свойств скаффолда // Комплексные проблемы сердечно-сосудистых заболеваний. - 2017. - Т.6. - № 3. - С.64-70. - ISSN 2306-1278. |
Внешние системы: | РИНЦ: 30021499; |
Реферат: | rus: Основная стратегия тканевой инженерии предполагает использование заселяемых клетками скаффолдов с последующим ведением в условиях биореактора. Однако, для эффективного использования биореактора необходима адаптация скаффолда уже на этапе его конструирования - в нашем понимании это оценка перфузионных свойств скаффолда. Цель: оценить перфузионные свойства полотна скаффолда полученного из композитного материала поликапролактона 11% w/v с желатинизацией 0,5%, 2% и 4% w/v при различных параметрах электроспиннинга и гидростатическом давлении жидкости 5, 10 и 15 mm Hg. Материалы и методы: Для получения композитного материала использовали поликапролактон 11% w/v и желатин, растворители 1,1,1,3,3,3-гексафторизопропанол, 2,2,2-трифтороэтанол, хлороформ. Было подготовлено три варианта композита поликапролактона 11% w/v с желатинизацией 0,5%, 2% и 4% w/v. Полотно изготавливалось с использованием установки NF 103 (MECC). Микроскопический анализ был проведен с использованием лазерного конфокального микроскопа «Zeiss LSM 710». Изучение перфузионных свойств полотна электроспиннинга выполняли на оригинальной экспериментальной установке. Результаты: Показана принципиальная возможность поперечной и продольной перфузии через полотно при гидростатическом давлении 5, 10 и 15 mm Hg. Найдено, что время продольной и поперечной перфузии 1 мл физиологического раствора зависит от степени желатинизации полотна и параметров электроспиннинга (полотно, изготовленное при скорости вращения коллектора в 450 об/мин, демонстрировало значение времени поперечной перфузии практически на один порядок меньше, нежели полотно, изготовленное при скоростях от 90 до 360 об/мин), при одинаковой толщине образцов и одинаковом перфузионном давлении. Заключение: Полученные в ходе данного исследования результаты позволяют оптимизировать процесс изготовления скаффолда полученного методом электроспиннинга, для эффективной перфузии и адекватного силового воздействия на адгезированную клеточную культуру в условиях биореактора. eng: A scaffold usage for the cell culturing is a widespread tissue engineering approach, including culturing in a bioreactor, however the effective use of a bioreactor requires adaptation of the scaffold at the stage of its design. In our opinion, this means assessment of the perfusion properties of the scaffold. Aim of the study: Aim of the study was the assessment of the perfusion properties of a scaffold sheet made of 11% w/v polycaprolactone (PCL) composite material with gelatinization of 0.5%, 2%, and 4% w/v and fabricated with different electrospinning parameters and hydrostatic pressure (5, 10, and 15 mm Hg). Materials and methods: To produce composite material, polycaprolactone, gelatin (type B), and solvents: 1,1,1,3,3,3-hexafluoroisopropanol, 2,2,2-trifluoroethanol and chloroform were used. Three composite variants of 11% w/v PCL with gelatinization of 0.5%, 2%, and 4% w/v were prepared. Perfusion properties of the scaffold sheet were assessed with an original experimental equipment. Structural analysis was carried out using the laser confocal microscopy. Results: Polymer scaffold sheet fabricated with electrospinning demonstrated the possibility of the transverse and longitudinal perfusion through the sheet under hydrostatic pressure of 5, 10, and 15 mm Hg. Also was found what time of 1 mL saline transverse and longitudinal perfusion through a PCL electrospun sheets depends from gelatinization and electrospinning parameters (transverse perfusion time of the sheet fabricated with the electrospinning collector speed of 450 rpm was 10 times lower than sheets fabricated with speed 90-180 rpm), with equal samples thickness and perfusion pressure. Conclusion: An obtained results allows to optimize the polymer scaffold fabrication process with electrospinning to achieve the optimal characteristics of the perfusion through the scaffold. |
Ключевые слова: | перфузия; scaffold; скаффолд; электроспиннинг; electrospinning; perfusion; |
Издано: | 2017 |
Физ. характеристика: | с.64-70 |
Цитирование: | 1. Антонова Л.В, Матвеева В.Г., Барбараш Л.С. Использование метода электроспиннинга в создании биодеградируемых сосудистых графтов малого диаметра: проблемы и решения (Обзор). Комплексные проблемы сердечно-сосудистых заболеваний. 2015; 3: 12-22. DOI: http://dx.doi.org/10.17802/2306-1278-2015-3-12-22 2. Nasonova M. V., Glushkova V. T., BorisovV. V., Velikanova E. A., Burago A. Yu., Kudryavtseva Yu. A. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds. Bulletin of Experimental Biology and Medicine. 2015; 160 (1): 134-140. DOI: 10.1007/s10517-015-3114-3 3. Ingavle G.C., Leach J.K. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev. 2014; 20 (4): 277-293. doi: 10.1089/ten.TEB.2013.0276 4. Holzwarth J.M., Ma P.X. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011; 36 (32): P.9622-9629. doi: 10.1016/j.biomaterials.2011.09.009 5. Al-Himdani S., Jessop Z.M, Al-Sabah A., Combellack E., Ibrahim A., Doak S.H. et al. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice Front Surg. 2017; 4: 4. Published online 2017 Feb 23. https://doi.org/10.3389/fsurg.2017.00004 6. Ami R. Amini, Cato T. Laurencin and Syam P. Nukavarapu Bone Tissue Engineering: Recent Advances and Challenges. Crit Rev Biomed Eng. 2012; 40(5): 363-408. 7. Chen Z., Bachhuka A., Han S., Wei F., Lu S., Visalakshan R.M. et al. A Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS Nano. 2017 May 23;11(5):4494-4506. doi: 10.1021/acsnano.6b07808. 8. Hu X., Wang Y., Tan Y., Wang J., Liu H., Wang Y. et al. A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment. Adv Mater. 2017 Apr; 29(15). doi: 10.1002/adma.201605235. Epub 2017 Feb 10. 9. Садовой М.А., Ларионов П.М., Самохин А.Г., Рожнова О.М. Клеточные матрицы (скаффолды) для целей регенерации кости: современное состояние проблемы. Хирургия позвоночника. 2014; (2): 79-86 10. Ларионов П.М., Садовой М.А., Самохин А.Г., Рожнова О.М., Гусев А.Ф., Принц В.Я. и др. Создание тканеинженерного эквивалента костной ткани и перспективы его использования в травматологии и ортопедии. Хирургия позвоночника. 2014;( 3): 77-85. doi: 10.14531/ss2014.3.77-85. 11. Egger D., Spitz S., Fischer M., Handschuh S., Glösmann M., Friemert B. et al. Application of a Parallelizable Perfusion Bioreactor for Physiologic 3D Cell Culture. Cells Tissues Organs. 2017; 203 (5): 316-326. doi: 10.1159/000457792. 12. Prabhakaran M.P. Venugopal J., Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia. 2009; 5 (8): 2884-2893. doi.org/10.1016/j.actbio.2009.05.007. |