Инд. авторы: Sokol A.G., Kruk A.N., Seryotkin Y.V., Korablin A.A., Palyanov Y.N.
Заглавие: Phase relations in the fe-fe3c-fe3n system at 7.8 gpa and 1350 °c: implications for carbon and nitrogen hosts in fe0-saturated upper mantle
Библ. ссылка: Sokol A.G., Kruk A.N., Seryotkin Y.V., Korablin A.A., Palyanov Y.N. Phase relations in the fe-fe3c-fe3n system at 7.8 gpa and 1350 °c: implications for carbon and nitrogen hosts in fe0-saturated upper mantle // Physics of the Earth and Planetary Interiors. - 2017. - Vol.265. - P.43-53. - ISSN 0031-9201. - EISSN 1872-7395.
Внешние системы: DOI: 10.1016/j.pepi.2017.02.007; РИНЦ: 29484785; РИНЦ: 45160569;
Реферат: eng: Phase relations in the Fe-Fe3C-Fe3N system are studied in high-pressure experiments at 7.8 GPa and 1350 °C using a split-sphere multi-anvil apparatus. The starting mixtures consisting of Fe, Fe3C and Fe3N are loaded into ceramic or graphite capsules. Contamination with trace amounts of oxygen leads to the appearance of wüstite in the system retaining oxygen fugacity (fO2) near the iron-wüstite (IW) buffer. The metal melt rich in carbon and nitrogen has a large stability field in the central part of the phase diagram, and this field at 1350 °C is tangent to the Fe-Fe3C side of the Fe-Fe3C-Fe3N triangle at the point of the Fe-Fe3C eutectics. Iron nitride ε-Fe3N (space group P6322 or P63/mmc) contains variable amounts of C and N: up to 2.0–2.5 wt% C and 6.0–7.3 wt% N in equilibrium with a C- and N-rich melt and as little as 1.0 wt% C and 3.2 wt% N in equilibrium with γ- Fe. The limit C and N contents in γ-Fe equilibrated with the C- and N-rich melt is about 1.0 wt%, while the N solubility in cementite (Fe3C) does not exceed 0.5 wt%. The obtained data make basis for the isothermal section of the Fe-Fe3C-Fe3N system. The metal melt phase is inferred to be the main host of carbon and nitrogen in the Fe0-saturated (0.1 wt%) mantle at a depth of ∼250 km. In particular, C- and N-bearing austenite (γ-Fe) and metal melts host carbon and nitrogen in the mantle depleted in volatiles (20 ppm C and 1 ppm N), whereas carbon and nitrogen in the mantle with high concentrations of volatiles (250 ppm C and 100 ppm N) reside in C- and N-rich melts with a minor amount of iron carbide (Fe3C). The presence of nickel and sulphur in metal are expected to inhibit the formation of iron carbide and increases the melt phase stability. Redox freezing of N-rich carbonate melts from subduction slabs in Fe0-saturated mantle may produce iron melts supersaturated with nitrogen and stable ε-Fe3N.
Ключевые слова: Metal-saturated mantle; Metal inclusions in diamond; Iron nitride; iron carbide; high-pressure experiments; oxidation;
Издано: 2017
Физ. характеристика: с.43-53
Цитирование: 1. Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M., Sobolev, N.V., Graphite and diamond formation via the interaction of iron carbide and Fe, Ni-sulphide under mantle P-T parameters. Dokl. Earth Sci. 471 (2016), 1144–1148. 2. Borzdov, Y., Pal'Yanov, Y., Kupriyanov, I., Gusev, V., Khokhryakov, A., Sokol, A., Efremov, A., HPHT synthesis of diamond with high nitrogen content from an Fe3N-C system. Diam. Relat. Mater. 11 (2002), 1863–1867. 3. Bouhifd, M.A., Roskosz, M., Jephcoat, A.P., Mysen, B.O., Nitrogen solubility in a molten assemblage of an (Fe, Ni) alloy and a CI chondritic silicate up to 18 GPa. Geochim. Cosmochim. Acta, 74, 2010, A109. 4. Bulanova, G.P., The formation of diamond. J. Geochem. Explor. 53 (1995), 1–23. 5. Cartigny, P., Harris, J.W., Javoy, M., Diamond genesis, mantle fractionations and mantle nitrogen content: a study of 13C-N concentrations in diamonds. Earth Planet. Sci. Lett. 185:1–2 (2001), 85–98. 6. Dasgupta, R., Hirschmann, M.M., The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298 (2010), 1–13. 7. Davies, R., Griffin, W., Pearson, N., Andrew, A., Doyle, B., O'Reilly, S.Y., Diamonds from the deep: pipe DO-27, Slave Craton, Canada. Proc. 7th Int. Kimberlite Conf., Red Roof Design, Cape Town, 1999, 148–155. 8. Day, H.W., A revised diamond–graphite transition curve. Am. Mineral. 97 (2012), 52–62. 9. Du, H., A reevaluation of the Fe-N and Fe-C-N systems. J. Phase Equilib. 14 (1993), 682–693. 10. Fadeeva, V.P., Tikhova, V.D., Nikulicheva, O.N., Elemental analysis of organic compounds with the use of automated CHNS analyzers. J. Anal. Chem. 63 (2008), 1094–1106. 11. Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., Rubie, D.C., Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428 (2004), 409–412. 12. Frost, D.J., McCammon, C.A., The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36 (2008), 389–420. 13. Fruchart, D., Chaudouet, P., Fruchart, R., Rouault, A., Senateur, J.P., Etudes structurales de composés de type cémentite: Effet de l'hydrogène sur Fe3C suivi par diffraction neutronique. Spectrométrie Mössbauer sur FeCo2B et Co3B dopés au57Fe. J. Solid State Chem. 51 (1984), 246–252. 14. Gajbhiye, N.S., Bhattacharyya, S., Shivaprasad, S.M., Synthesis and characterization of ε-Fe3N/GaN, 54/46-composite nanowires. Mater. Res. Bull. 43 (2008), 272–283. 15. Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N., Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357 (2012), 99–110. 16. Guillermet, A.F., Frisk, K., Thermodynamic properties of Ni nitrides and phase stability in the Ni-N system. Int. J. Thermophys. 12 (1991), 417–431. 17. Hashizume, K., Kase, T., Matsuda, J., On the siderophile behaviour of nitrogen and carbon: implications for their inventory in the Earth. Kazan 42 (1997), S293–S301. 18. Hasterok, D., Chapman, D.S., Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 307 (2011), 59–70. 19. Hayman, P.C., Kopylova, M.G., Kaminsky, F.V., Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Mineral. Petrol. 149 (2005), 430–445. 20. Hernlund, J., Leinenweber, K., Locke, D., Tyburczy, J., A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 91 (2006), 295–305. 21. Jack, K.H., Binary and ternary interstitial alloys. II. The iron-carbon-nitrogen system. Proc. R. Soc. London A, 195, 1948, 41. 22. Jacob, D.E., Kronz, A., Viljoen, K.S., Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146 (2004), 566–576. 23. Jacobs, H., Rechenbach, D., Zachwieja, U., Structure determination of γ′-Fe4N and ε-Fe3N. J. Alloys Compd. 227 (1995), 10–17. 24. Kadik, A., Litvin, Y.A., Koltashev, V.V., Kryukova, E.B., Plotnichenko, V.G., Tsekhonya, T.I., Kononkova, N.N., Solution behaviour of reduced N-H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature. Phys. Earth Planet. Inter. 214 (2013), 14–24. 25. Kagawa, A., Okamoto, T., Partition of nitrogen in hypo-eutectic and nearly eutectic iron-carbon alloys. Trans. Jap. Inst. Met., 22, 1981, 137. 26. Kaminsky, F.V., Wirth, R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can. Mineral. 49 (2011), 555–572. 27. Leineweber, A., Jacobs, H., Hüning, F., Lueken, H., Kockelmann, W., Nitrogen ordering and ferromagnetic properties of ∊-Fe3N1+x (0.10 ≤ x ≤ 0.39) and ∊-Fe3(N0.80C0.20)1.38. J. Alloys Compd., 316, 2001, 21. 28. Li, Y., Keppler, H., Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 129 (2014), 13–32. 29. Liapina, T., Leineweber, A., Mittemeijer, E.J., Kockelmann, W., The lattice parameters of ε-iron nitrides: lattice strains due to a varying degree of nitrogen ordering. Acta Mater., 52, 2004, 173. 30. Litasov, K.D., Shatskiy, A., Ohtani, E., Yaxley, G.M., Solidus of alkaline carbonatite in the deep mantle. Geology 41 (2013), 79–82. 31. Litasov, K.D., Rashchenko, S.V., Shmakov, A.N., Palyanov, Y.N., Sokol, A.G., Thermal expansion of iron carbides, Fe7C3 and Fe3C, at 297–911 K determined by in situ X-ray diffraction. J. Alloy. Compd. 628 (2015), 102–106. 32. Lord, O.T., Walter, M.J., Dasgupta, R., Walker, D., Clark, S.M., Melting in the Fe-C system to 70 GPa. Earth Planet. Sci. Lett. 284 (2009), 157–167. 33. Luth, R.W., Volatiles in Earth's mantle. Treatise on Geochemistry 3.9, 2014, Elsevier, Oxford, 355–391. 34. Marty, B., The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314 (2012), 56–66. 35. McCammon, C., Kopylova, M.G., A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148 (2004), 55–68. 36. Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K., Takahashi, E., Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochim. Cosmochim. Acta 68 (2004), 387–401. 37. O'Neill, H.S.C., Wall, V.J., The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's Upper Mantle. J. Petrol. 28 (1987), 1169–1191. 38. Oxford Diffraction, CrysAlis RED. 2008, Oxford Diffraction Ltd, Abingdon, England. 39. Pal'yanov, Y.N., Khokhryakov, A.F., Borzdov, Y.M., Sokol, A.G., Gusev, V.A., Rylov, G.M., Sobolev, N.V., Growth conditions and real structure of synthetic diamond crystals. Russ. Geol. Geophys. 38 (1997), 882–906. 40. Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N., Sobolev, N.V., Sulphide melts–graphite interaction at HPHT conditions: implications for diamond genesis. Earth Planet. Sci. Lett. 250 (2006), 269–280. 41. Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10 (2010), 3169–3175. 42. Palyanov, Yu.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., Sobolev, N.V., Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 20408–20413. 43. Pearson, D.G., Canil, D., Shirey, S.B., Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise on Geochemistry (Second Edition) 3:5 (2014), 169–253. 44. Rohrbach, A., Schmidt, M.W., Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 472 (2011), 209–212. 45. Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V.S., Kuzmin, D.V., Metal saturation in the upper mantle. Nature 449 (2007), 456–458. 46. Rohrbach, A., Ghosh, S., Schmidt, M.W., Wijbrans, C.H., Klemme, S., The stability of Fe–Ni carbides in the Earth's mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 388 (2014), 211–221. 47. Roskosz, M., Bouhifd, M.A., Jephcoat, A.P., Marty, B., Mysen, B.O., Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 121 (2013), 15–28. 48. Sheldrick, G., A short history of SHELX. Acta Crystallogr. A 64 (2008), 112–122. 49. Smith, E.M., Kopylova, M.G., Implications of metallic iron for diamonds and nitrogen in the sub-lithospheric mantle. Can. J. Earth Sci. 51 (2014), 510–516. 50. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., Wang, W., Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354 (2016), 1403–1405. 51. Sobolev, N.V., Efimova, E.S., Pospelova, L.N., Native iron in Yakutian diamonds and its mineral assemblage. Soviet Geol. Geophys. 22:12 (1981), 25–28. 52. Sokol, A.G., Palyanova, G.A., Palyanov, Yu.N., Tomilenko, A.A., Melenevsky, V.N., Fluid regime and diamond formation in the reduced mantle: experimental constraints. Geochim. Cosmochim. Acta 73 (2009), 5820–5834. 53. Sokol, A.G., Borzdov, Yu.M., Palyanov, Yu.N., Khokhryakov, A.F., High-temperature calibration of a multi-anvil high-pressure apparatus. High Pressure Res. 35 (2015), 139–147. 54. Sokol, A.G., Palyanov, Yu.N., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5–7.8 GPa. Earth Planet. Sci. Lett. 460 (2017), 234–243. 55. Somers, M.A.J., Mittemeijer, E.J., Formation and growth of compound layer on nitrocarburizing iron: kinetics and microstructural evolution. Surf. Eng. 3 (1987), 123–137. 56. Stachel, T., Harris, J.W., Brey, G.P., Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 132 (1998), 34–47. 57. Strong, H.M., Chrenko, R.M., Diamond growth rates and physical properties of laboratory-made diamond. J. Phys. Chem. 75 (1971), 1838–1843. 58. The Powder Diffraction File PDF-4+, 2006. International Centre for Diffraction Data (ICDD), Release 2006. 59. Thomson, A.R., Walter, M.J., Kohn, S.C., Brooker, R.A., Slab melting as a barrier to deep carbon subduction. Nature 529 (2016), 76–79. 60. Tomilenko, A.A., Chepurov, A.I., Pal'yanov, Y.N., Pokhilenko, L.N., Shebanin, A.P., Volatile components in the upper mantle (from data on fluid inclusions). Russian Geology and Geophysics c/c of Geologiia i Geofizika 38 (1997), 294–303. 61. Turkin, A.I., Lead selenide as a continuous internal indicator of pressure in solid-media cells of high-pressure apparatus in the range of 4–6.8 GPa. High Temp. High Pressures 36 (2004), 371–376. 62. Wells, A., Metallographic analysis of compound layers on ferritic nitrocarburized plain low carbon steel. J. Mater. Sci. 20 (1985), 2439–2445. 63. Wood, I.G., Vočadlo, L., Knight, K.S., Dobson, D.P., Marshall, W.G., Price, G.D., Brodholt, J., Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Applied Crystallogr. 37 (2004), 82–90. 64. Woodland, A.B., Koch, M., Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214 (2003), 295–310. 65. Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Golovin, A.V., An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140 (2012), 142–151.