Инд. авторы: Sobolev N.V., Schertl H.-., Neuser R.D., Tomilenko A.A., Kuzmin D.V., Logvinova A.M., Tolstov A.V., Kostrovitsky S.I., Yakovlev D.A., Oleinikov O.B.
Заглавие: Formation and evolution of hypabyssal kimberlites from the siberian craton: part 1 – new insights from cathodoluminescence of the carbonates
Библ. ссылка: Sobolev N.V., Schertl H.-., Neuser R.D., Tomilenko A.A., Kuzmin D.V., Logvinova A.M., Tolstov A.V., Kostrovitsky S.I., Yakovlev D.A., Oleinikov O.B. Formation and evolution of hypabyssal kimberlites from the siberian craton: part 1 – new insights from cathodoluminescence of the carbonates // Journal of Asian Earth Sciences. - 2017. - Vol.145. - Iss. Part B. - P.670-678. - ISSN 1367-9120. - EISSN 1878-5786.
Внешние системы: DOI: 10.1016/j.jseaes.2017.06.009; РИНЦ: 29347684; SCOPUS: 2-s2.0-85021185999; WoS: 000411533600025;
Реферат: eng: Cathodoluminescence (CL) microscopy studies were performed to unravel internal structures and zonations of carbonates from 6 unaltered hypabyssal kimberlites from several Mesozoic - Paleozoic kimberlite pipes of the Siberian craton. Different generations of prograde and retrograde carbonate grains/domains were identified. Most investigated kimberlite samples are unusually fresh and contain abundant unaltered olivine. Only minor amounts of carbonates of a primary magmatic origin were found; most carbonates are of secondary origin formed during late metasomatic or hydrothermal events. A rare carbonatite xenolith discovered in the Malokuonapskaya kimberlite contains abundant apatite and monazite; an apatite inclusion was detected in one zircon grain. Some apatites contain oriented lamellae of monazite. Early studies of the carbonate minerals in this xenolith demonstrated a trace amount of Sr; all these characteristics are typical of carbonatite. We conclude that carbonate minerals play a significant role in the evolution of hypabyssal kimberlites of the Siberian craton. The CL-studies of these minerals provide significant insights into their growth history and help to differentiate different parageneses, as either primary or secondary. Carbonatite xenoliths are of vital significance for the discussion of a possible genetic interrelation of kimberlite and carbonatite melts in the mantle. The present results may serve as a starting point for future studies of these carbonate minerals, using electron-microprobe, micro-PIXE or other high-resolution techniques. Future in-situ oxygen and carbon isotope analyses, as well as inclusions of melt, fluid, and minerals in different carbonate domains, will add essential new data with which to further unravel the genesis of the kimberlite-carbonatite association.
Ключевые слова: carbonate; cathodoluminescence; Carbonatite; Hypabyssal; kimberlite; Siberian Craton;
Издано: 2017
Физ. характеристика: с.670-678
Цитирование: 1. Allan, M.M., Yardley, B.W.D., 2007. Tracking meteoric infiltration into a magmatic-hydrothermal system: a cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chem. Geol. 240, 343-360. 2. Bulanova, G.P., 1995. The formation of diamond. J. Geochem. Explor. 53, 1-23. 3. Burgess, S.D., Blackburn, T.J., Bowning, S.A., 2015. High precision U-Pb geochronology of Phanerozoic Large Igneous Provinces. In: Volcanism and Global Environmental Change. Cambridge University Press, Cambridge, pp. 47-62. 4. Catlos, E.J., Baker, C., Sorensen, S.S., Çemen, I., Hançer, M., 2010. Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, western Turkey): implications for Aegean tectonics. Tectonophysics 488, 110-130. 5. Chakhmouradian, A.R., Mitchell, R.H., 1999. Niobian ilmenite, hydroxyl-apatite and sulfatian monazite: alternative hosts for incompatible elements in calcite kimberlite from Internationalnaya, Yakutia. Can. Mineral. 37, 1177-1189. 6. Dalton, J.A., Presnall, D.C., 1998. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J. Petrol. 39, 1953-1964. 7. Davis, G.L., Sobolev, N.V., Kharkiv, A.D., 1980. New data on the age of Yakutian kimberlites obtained by the U-Pb method on zircons. Dokl. Akad. Nauk SSSR 254, 175-179 (in Russian). 8. Götze, J., Schertl, H.-P., Neuser, R.D., Kempe, U., Hanchar, J.M., 2012. Optical microscope-cathodoluminescence (OM-CL) imaging as a powerful tool to reveal internal textures of minerals. Mineral. Petrol. 106. 9. Griffin, W.L., Natapov, L.M., O'Reilly, S.Y., van Achterberg, E., Cherenkova, A.F., Cherenkov, V.G., 2005. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap events. Lithos 81, 167-187. 10. Habermann, D., Meijer, J., Neuser, R.D., Richter, D.K., Rolfs, C., Stephan, A., 1999. Micro-PIXE and quantitative cathodoluminescence spectroscopy: combined high resolution trace element analyses in minerals. Nucl. Instrum. Methods Phys. Res. B 150, 470-477. 11. Harlow, G.E., Sorensen, S.S., 2005. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. Int. Geol. Rev. 47, 113-146. 12. Houzar, S., Leichmann, J., 2003. Application of cathodoluminescence to the study of metamorphic textures in marbles from the eastern part of the Bohemian Massif. Bull. Geosci. 78 (3), 241-250. 13. Jones, R.H., Carey, E.R., 2006. Identification of relict forsterite grains in forsterite-rich chondrules from the Mokoia CV3 carbonaceous chondrite. Am. Miner. 91, 1664-1674. 14. Jones, A.P., Gende, M., Carmody, L., 2013. Carbonate melts and carbonatites. In: Hazen, R.M., Jones, A.P., Baross, J.A. (Eds.), "Carbon in Earth". Review in Mineralogy and Geochemistry, vol. 75, pp. 289-322. 15. Kharkiv, A.D., Zinchuk, N.N., Kryuchkov, A.I., 1998. Primary deposits of diamonds Worlwide. Nedra, Moscow (in Russian). 16. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., 1997. SHRIMP UPb ages of perovskite from Yakutian kimberlites. Geologiya I Geofizika (Russ. Geol. Geophys.) 38 (1), 91-99. 17. Lepekhina, E.N., Rotman, A., Ya., Antonov, A.V., Sergeev S.A., 2008. SHRIMP U-Pb zircon ages of Yakutian Kimberlite pipes. In: 9th International Kimberlite Conference Extended Abstracts, 9IKC-A-00354. 18. Marfunin, A.S., 1979. Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer Verlag, Berlin, Heidelberg, New York, pp. 352. 19. Mason, R.A., Mariano, A.N., 1990. Cathodoluminescence activation in manganese bearing and rare-earth bearing synthetic calcites. Chem. Geol. 88, 191-206. 20. Mitchell, R.H., 1979. The alleged kimberlite-carbonatite relationship; additional contrary mineralogical evidence. Am. J. Sci. 279, 570-589. 21. Mitchell, R.H., 2008. Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geoth. Res. 174 (1-3), 1-8. 22. Marshall, D.J., 1988. Cathodoluminescence of Geological Materials. Allen & Unwin, NY 146p. 23. Neuser, R.D., 1995. A new high-intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochumer geol. u. geotech. Arb. 44, 116-118. 24. Müller, A., van den Kerkhof, A.M., Selbekk, R.S., Broekmans, M.A.T.M., 2016. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications. Contrib. Miner. Petrol. 171, 70. 25. Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D., 2000. Cathodoluminescence in Geosciences. Springer Verlag, Berlin, pp. 514. 26. Palyanov, Yu.N., Sokol, A.G., Khokhraykov, A.F., Kruk, F.N., 2015. Conditions of diamond crystallization in kimberlite melt: experimental data. Russ. Geol. Geophys. (Geologiya I Geofizika) 56 (1-2), 196-210 (254-272). 27. Richter, D.K., Götte, T., Götze, J., Neuser, R.D., 2003. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral. Petrol. 79, 127-166. 28. Safonov, O.G., Kamenetsky, V.S., Perchuk, L.L., 2011. Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems: experiments and applicationto natural assemblages. J. Petrol. 52, 1307-1331. 29. Satish-Kumar, M., Mori, H., Kusachi, I., Wada, H., 2006. Cathodoluminescence microscopy of high-temperature skarn minerals from Fuka contact aureole, Okayama, Japan. Geosci. Rep. Shizuoka Univ. 33, 21-28. 30. Schertl, H.-P., Sobolev, N.V., 2013. The Kokchetav Massif, Kazakhstan: "Type locality" of diamond-bearing UHP metamorphic rocks. J. Asian Earth Sci. 63, 5-38. 31. Schertl, H.-P., Neuser, R.D., Sobolev, N.V., Shatsky, V.S., 2004. UHP-metamorphic rocks from Dora Maira/Western Alps and Kokchetav, Kazakhstan: new insights using cathodoluminescence petrography. Eur. J. Mineral. 16, 49-57. 32. Schertl, H.-P., Medenbach, O., Neuser, R.D., 2005. UHP-metamorphic rocks from Dora Maira, Western Alps: cathodoluminescence of silica and twinning of coesite. Russ. Geol. Geophys. 46, 1345-1351. 33. Schertl, H.-P., Maresch, W.V., Stanek, K.P., Hertwig, A., Krebs, M., Baese, R., Sergeev, S.S., 2012. New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological and geochronological overview. Eur. J. Mineral. 24, 199-216. 34. Schertl, H.-P., Neuser, R.D., Logvinova, A.M., Wirth, R., Sobolev, N.V., 2015. Cathodoluminescence microscopy of the Kokchetav ultrahigh-pressure calcsilicate rocks: what can we learn from silicates, carbon-hosting minerals, and diamond? Russ. Geol. Geophys. 56 (1-2), 100-112. 35. Shirey, S.B., Cartigny, P., Frost, D.J., Keshaw, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., Walter, M.J., 2013. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355-421. 36. Słaby, E., Götze, J., 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling -a case study from the Karkonosze pluton (SW Poland). Mineral. Mag. 68, 561-577. 37. Sobolev, N.V., Shatsky, V.S., 1990. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343, 742-746. 38. Sobolev, N.V., Schertl, H.-P., Neuser, R.D., Shatsky, V.S., 2007. Relict unusually low iron pyrope-grossular garnets in UHPM calcsilicate rocks of the Kokchetav Massif, Kazakhstan. Int. Geol. Rev. 49, 717-731. 39. Sobolev, N.V., Logvinova, A.M., Yefimova, E.S., 2009. Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russ. Geol. Geophys. (Geologiya I Geofizika) 50 (12), 1234-1248. 40. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Batanova, V.G., Tolstov, A.V., Logvinova, A.M., Kuzmin, D.V., 2015a. Unique compositional peculiarities of olivine phenocrysts from the post flood basalt diamondiferous Malokuonapskaya kimberlite pipe, Yakutia. Doklady Earth Sci. 463 (2), 828-832. 41. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Batanova, V.G., Kuz'min, D.V., 2015b. Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russ. Geol. Geophys. 56 (1-2), 260-279. 42. Sorensen, S.S., Harlow, G.E., Rumble, D., 2006. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. Am. Miner. 91, 979-996. 43. Sun, J., Liu, C.Z., Tappe, S., Kostrovitsky, S.I., Wu, F.Y., Yakovlev, D., Yang, Y.H., 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 404, 283-295. 44. Tomilenko, A.A., Kovyazin, S.V., Dublyansky, Y.V., Pokhilenko, L.N., 2009. Primary melt and fluid inclusions in minerals from kimberlites of the Udachnaya-Vostochnaya pipe, Yakutia. ECROFI 2009, Granada, Spain. Abstract Volume, 255-256. 45. Wiebe, R.A., Wark, D.A., Hawkins, D.P., 2007. Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. Contrib. Miner. Petrol. 154, 439-453. 46. Whitney, D.L., Evans, D.W., 2010. Abbreviations for names of rock-forming minerals. Am. Miner. 95, 185-187. 47. Wyllie, P.J., Huang, W.L., 1975. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature 257, 297-299. 48. Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., Fang, Q.S., Robinson, P.T., Zhang, J.F., Green II, H.W., 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35, 875-878. 49. Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., Cliff, J., 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 27, 459-485.