Инд. авторы: Litasov K.D., Shatskiy A., Gavryushkin P.N., Bekhtenova A.E., Dorogokupets P.I., Danilov B.S., Higo Y., Akilbekov A.T., Inerbaev T.M.
Заглавие: P-v-t equation of state of caco3 aragonite to 29 gpa and 1673 k: in situ x-ray diffraction study
Библ. ссылка: Litasov K.D., Shatskiy A., Gavryushkin P.N., Bekhtenova A.E., Dorogokupets P.I., Danilov B.S., Higo Y., Akilbekov A.T., Inerbaev T.M. P-v-t equation of state of caco3 aragonite to 29 gpa and 1673 k: in situ x-ray diffraction study // Physics of the Earth and Planetary Interiors. - 2017. - Vol.265. - P.82-91. - ISSN 0031-9201. - EISSN 1872-7395.
Внешние системы: DOI: 10.1016/j.pepi.2017.02.006; РИНЦ: 29487677; РИНЦ: 29487677;
Реферат: eng: Pressure–volume–temperature relations have been measured to 29 GPa and 1673 K for CaCO3 aragonite using synchrotron X-ray diffraction with a multianvil apparatus at the ‘SPring-8’ facility. A least-squares fit of the room-temperature compression data to the Vinet-Rydberg equation of state (EOS) yielded KT0 = 65.7 ± 0.8 GPa and KT' = 5.1 ± 0.1, with fixed V0 = 227.11 Å3. Further analysis of the high-temperature compression data led to the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.016 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.98 (22) × 10−5 K−1 and a1 = 2.81(38) × 10−8 K−2. The Mie-Gruneisen-Debye approach revealed the Gruneisen parameter γ0 = 1.39 at a fixed Debye temperature θ0 = 516 K and the parameter q = 1. Analysis of axial compressibility and thermal expansion indicates that the c-axis is two times more compressible than the b-axis and four times more compressible than the a-axis, whereas zero-pressure thermal expansion of the a-axis (a0a = 2.6 × 10−5 K−1 and a1a = 2.3 × 10−8 K−2) is weaker than that of the b-axis axis (a0b = 6.3 × 10−5 K−1 and a1b = 0.1 × 10−8 K−2) and c-axis axis (a0c = 5.2 × 10−5 K−1 and a1c = 9.5 × 10−8 K−2). A full set of thermodynamic parameters (including heat capacity, enthalpy and free energy) for aragonite and updated equations of state for magnesite and siderite was obtained using the Kunc-Einstein approach. The new EOS parameters were used for thermodynamic calculations for aragonite decarbonation reactions. The present thermal EOS provides accurate calculations of aragonite density to deep mantle. Decarbonation of subducting oceanic crust containing 2 wt% aragonite would result in a 0.5% density reduction at 30 GPa and 1273 K. Aragonite becomes denser than magnesite at pressures about 16 GPa along the 1500 K isotherm and at 9 GPa along the 298 K isotherm.
Ключевые слова: Synchrotron X-ray diffraction; subduction; mantle; equation of state; carbonate; Aragonite;
Издано: 2017
Физ. характеристика: с.82-91
Цитирование: 1. Al'tshuler, L.V., Brusnikin, S.E., Kuz'menkov, E.A., Isotherms and Grüneisen functions for 25 metals. J. Appl. Mech. Tech. Phys. 28 (1987), 129–141. 2. Alt, J.C., Teagle, D.A.H., The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63 (1999), 1527–1535. 3. Anderson, O.L., Equations of State of Solids for Geophysics and Ceramic Science. 1995, Oxford University Press, Oxford, 405. 4. Antao, S.M., Hassan, I., The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can. Mineral. 47 (2009), 1245–1255. 5. Antao, S.M., Hassan, I., Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data. Can. Mineral. 48 (2010), 1225–1236. 6. Bebout, G.E., The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol. 126 (1995), 191–218. 7. Bell, K., Carbonatites: Genesis and Evolution. 1989, Unwin Hyman, London, 618. 8. Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L., Joswig, W., Kaminsky, F., Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 260 (2007), 1–9. 9. Catti, M., Pavese, A., Price, G., Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation. Phys. Chem. Miner. 19 (1993), 472–479. 10. Dasgupta, R., Hirschmann, M.M., Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440 (2006), 659–662. 11. Dorogokupets, P.I., Dewaele, A., Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Pressure Res. 27 (2007), 431–446. 12. Dorogokupets, P.I., Oganov, A.R., Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B, 75, 2007, 024115, 10.1103/PhysRevB.75.024115. 13. Gasparik, T., Phase Diagrams for Geoscientists. 2003, Springer-Verlag Berlin-Heidelberg, New-York, 462. 14. Ghosh, S., Ohtani, E., Litasov, K.D., Terasaki, H., Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chem. Geol. 262 (2009), 17–28. 15. Grassi, D., Schmidt, M.W., The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 52 (2011), 765–789. 16. Harker, R., Tuttle, O., Experimental data on the PCO2-T curve for the reaction: calcite + quartz = wollastonite + carbon dioxide. Am. J. Sci. 254 (1956), 239–256. 17. Holland, T.J.B., Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29 (2011), 333–383. 18. Holland, T.J.B., Redfern, S.A.T., Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 61 (1997), 65–77. 19. Holzapfel, W.B., Physics of solids under strong compression. Rep. Prog. Phys. 59 (1996), 29–90. 20. Holzapfel, W.B., Equations of state for solids under strong compression. Z. Kristallogr. 216 (2001), 473–488. 21. Ionov, D.A., Oreilly, S.Y., Genshaft, Y.S., Kopylova, M.G., Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions and trace-element residence. Contrib. Miner. Petrol. 125 (1996), 375–392. 22. Ishizawa, N., Setoguchi, H., Yanagisawa, K., Structural evolution of calcite at high temperatures: Phase V unveiled. Sci. Rep., 3, 2013, 10.1038/srep02832. 23. Jackson, I., Rigden, S.M., Analysis of P-V–T data: constraints on the thermoelastic properties of high-pressure minerals. Phys. Earth Planet. Inter. 96 (1996), 85–112. 24. Jamieson, J.C., Phase equilibrium in the system calcite-aragonite. J. Chem. Phys. 21 (1953), 1385–1390. 25. Johnston, F.K.B., Turchyn, A.V., Edmonds, M., Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet. Sci. Lett. 303 (2011), 143–152. 26. Kaminsky, F., Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 110 (2012), 127–147. 27. Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., Thomas, R., Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral. Mag. 73 (2009), 797–816. 28. Katsura, T., Funakoshi, K., Kubo, A., Nishiyama, N., Tange, Y., Sueda, Y., Kubo, T., Utsumi, W., A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk.II'. Phys. Earth Planet. Inter. 143 (2004), 497–506. 29. Kerrick, D.M., Connolly, J.A.D., Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189 (2001), 19–29. 30. Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E., Kamenetsky, V.S., Melting phase relations of carbonated eclogite at 9–21 GPa and alkali-rich melts in the deep mantle. J. Petrol. 54 (2013), 1555–1583. 31. Kiseeva, E.S., Yaxley, G.M., Hermann, J., Litasov, K.D., Rosenthal, A., Kamenetsky, V.S., An experimental study of carbonated eclogite at 3.5–5.5 GPa: Implications for silicate and carbonate metasomatism in the cratonic mantle. J. Petrol. 53 (2012), 727–759. 32. Kunc, K., Loa, I., Syassen, K., Equation of state and phonon frequency calculations of diamond at high pressures. Phys. Rev. B, 68, 2003, 094107, 10.1103/PhysRevB.68.094107. 33. Li, Y., Zou, Y., Chen, T., Wang, X., Qi, X., Chen, H., Du, J., Li, B., PVT equation of state and high-pressure behavior of CaCO3 aragonite. Am. Mineral. 100 (2015), 2323–2329. 34. Litasov, K., Ohtani, E., The solidus of carbonated eclogite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and carbonatite liquid in the deep mantle. Earth Planet. Sci. Lett. 295 (2010), 115–126. 35. Litasov, K., Ohtani, E., Sano, A., Suzuki, A., Funakoshi, K., In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: Implication for the 660-km discontinuity. Earth Planet. Sci. Lett. 238 (2005), 311–328. 36. Litasov, K.D., Physicochemical conditions for melting in the Earth's mantle containing a C-O–H fluid (from experimental data). Russ. Geol. Geophys. 51 (2011), 475–492. 37. Litasov, K.D., Dorogokupets, P.I., Ohtani, E., Fei, Y., Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Rashchenko, S.V., Seryotkin, Y.V., Higo, Y., Funakoshi, K., Chanyshev, A.D., Lobanov, S.S., Thermal equation of state and thermodynamic properties of molybdenum at high pressure. J. Appl. Phys., 113, 2013, 093507. 38. Litasov, K.D., Fei, Y.W., Ohtani, E., Kuribayashi, T., Funakoshi, K., Thermal equation of state of magnesite to 32 GPa and 2073 K. Phys. Earth Planet. Inter. 168 (2008), 191–203. 39. Litasov, K.D., Ohtani, E., Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to the lower mantle depths. Phys. Earth Planet. Inter. 177 (2009), 46–58. 40. Litasov, K.D., Ohtani, E., Ghosh, S., Nishihara, Y., Suzuki, A., Funakoshi, K., Thermal equation of state of superhydrous phase B to 27 GPa and 1373 K. Phys. Earth Planet. Inter. 164 (2007), 142–160. 41. Litasov, K.D., Ohtani, E., Nishihara, Y., Suzuki, A., Funakoshi, K., Thermal equation of state of Al- and Fe-bearing phase D. J. Geophys. Res. Solid Earth, 113, 2008, B08205, 10.1029/2007JB004937. 42. Litasov, K.D., Sharygin, I.S., Dorogokupets, P.I., Shatskiy, A., Gavryushkin, P.N., Sokolova, T.S., Ohtani, E., Li, J., Funakoshi, K., Thermal equation of state to 31 GPa and 1473 K and thermodynamic properties of Iron carbide, Fe3C. J. Geophys. Res., 2013, 10.1002/2013JB010270. 43. Litasov, K.D., Shatskiy, A., Fei, Y.W., Suzuki, A., Ohtani, E., Funakoshi, K., Pressure-volume-temperature equation of state of tungsten carbide to 32 GPa and 1673 K. J. Appl. Phys., 108, 2010, 053513, 10.1063/1.3481667. 44. Litasov, K.D., Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Dorogokupets, P.I., Dymshits, A.M., Ohtani, E., Higo, Y., Funakoshi, K., P-V-T equation of state of siderite to 33 GPa and 1673 K. Phys. Earth Planet. Inter. 224 (2013), 83–87. 45. Litasov, K.D., Shatskiy, A., Ohtani, E., Yaxley, G.M., Solidus of alkaline carbonatite in the deep mantle. Geology 41 (2013), 79–82. 46. Liu, L.-G., Chen, C.-C., Lin, C.-C., Yang, Y.-J., Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys. Chem. Miner. 32 (2005), 97–102. 47. Lucas, A., Mouallem-Bahout, M., Carel, C., Gaudé, J., Matecki, M., Thermal expansion of synthetic aragonite condensed review of elastic properties. J. Solid State Chem. 146 (1999), 73–78. 48. MacDonald, G.J., Experimental determination of calcite-aragonite equilibrium relations at elevated temperatures and pressures. Am. Mineral. 41 (1956), 744–756. 49. Mao, H., Xu, J.-A., Bell, P., Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91 (1986), 4673–4676. 50. Martinez, I., Zhang, J.Z., Reeder, R.J., In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: Evidence for dolomite breakdown to aragonite and magnesite. Am. Mineral. 81 (1996), 611–624. 51. Matas, J., Gillet, P., Ricard, Y., Martinez, I., Thermodynamic properties of carbonates at high pressures from vibrational modelling. Eur. J. Mineral. 12 (2000), 703–720. 52. Merlini, M., Hanfland, M., Crichton, W.A., CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle. Earth Planet. Sci. Lett. 333–334 (2012), 265–271. 53. Oganov, A.R., Glass, C.W., Ono, S., High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241 (2006), 95–103. 54. Oganov, A.R., Ono, S., Ma, Y.M., Glass, C.W., Garcia, A., Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 273 (2008), 38–47. 55. Ono, S., Kikegawa, T., Ohishi, Y., High-pressure transition of CaCO3. Am. Mineral. 92 (2007), 1246–1249. 56. Ono, S., Kikegawa, T., Ohishi, Y., Tsuchiya, J., Post-aragonite phase transformation in CaCO3 at 40 GPa. Am. Mineral. 90 (2005), 667–671. 57. Palaich, S.E.M., Heffern, R.A., Hanfland, M., Lausi, A., Kavner, A., Manning, C.E., Merlini, M., High-pressure compressibility and thermal expansion of aragonite. Am. Mineral. 101 (2016), 1651–1658. 58. Poirier, J.P., Introduction to the Physics of the Earth's Interior. second ed., 2000, Cambridge Univ. Press, Cambridge, UK, 312. 59. Robie, R.A., Hemingway, B., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressure and at higher temperatures, Vol. 1452, 1995, United States Geological Survey Bulletin, Washington, DC, 461. 60. Salje, E., Viswanathan, K., The phase diagram calcite-aragonite as derived from the crystallographic properties. Contrib. Miner. Petrol. 55 (1976), 55–67. 61. Sanchez-Valle, C., Ghosh, S., Rosa, A.D., Sound velocities of ferromagnesian carbonates and the seismic detection of carbonates in eclogites and the mantle. Geophys. Res. Lett., 38, 2011, L24315, 10.21029/2011gl049981. 62. Santillán, J., Williams, Q., A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am. Mineral. 89 (2004), 1348–1352. 63. Sekkal, W., Taleb, N., Zaoui, A., Shahrour, I., A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock. Am. Mineral. 93 (2008), 1608–1612. 64. Shatskiy, A., Katsura, T., Litasov, K.D., Shcherbakova, A.V., Borzdov, Y.M., Yamazaki, D., Yoneda, A., Ohtani, E., Ito, E., High pressure generation using scaled-up Kawai-cell. Phys. Earth Planet. Inter. 189 (2011), 92–108. 65. Sokolova, T.S., Dorogokupets, P.I., Dymshits, A.M., Danilov, B.S., Litasov, K.D., Microsoft excel spreadsheets for calculation of PVT relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput. Geosci. 94 (2016), 162–169. 66. Sokolova, T.S., Dorogokupets, P.I., Litasov, K.D., Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt and other metals to 4 Mbars and 3000 K. Russ. Geol. Geophys. 54 (2013), 181–199. 67. Staudigel, H., Chemical fluxes from hydrothermal alteration of the oceanic crust. Turekian, K.K., Holland, H.D., (eds.) Treatise on Geochemistry, second ed., 2014, Elsevier, Oxford, 583–606. 68. Staveley, L., Linford, R., The heat capacity and entropy of calcite and aragonite, and their interpretation. J. Chem. Thermodyn. 1 (1969), 1–11. 69. Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., Kikegawa, T., Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 86 (2001), 997–1002. 70. Syracuse, E.M., van Keken, P.E., Abers, G.A., The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183 (2010), 73–90. 71. Ungureanu, C.G., Prencipe, M., Cossio, R., Ab initio quantum-mechanical calculation of CaCO3 aragonite at high pressure: thermodynamic properties and comparison with experimental data. Eur. J. Mineral. 22 (2010), 693–701. 72. Utsumi, W., Funakoshi, K., Urakawa, S., Yamakata, M., Tsiji, K., Konishi, H., Shimomura, O., SPring-8 beamlines for high pressure scince with multianvil apparatus. Rev. High Pressure Sci. Technol. 7 (1998), 1484–1486. 73. Vinet, P., Ferrante, J., Rose, J., Smith, J., Compressibility of solids. J. Geophys. Res. 92 (1987), 9319–9325. 74. Vizgirda, J., Ahrens, T.J., Shock compression of aragonite and implications for the equation of state of carbonates. J. Geophys. Res. 87 (1982), 4747–4758. 75. Yaxley, G.M., Brey, G.P., Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib. Miner. Petrol. 146 (2004), 606–619. 76. Ye, Y., Smyth, J.R., Boni, P., Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction. Am. Mineral. 97 (2012), 707–712. 77. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russ. Geol. Geophys. 52 (2011), 1298–1309. 78. Zedgenizov, D.A., Shatskiy, A., Ragozin, A.L., Kagi, H., Shatsky, V.S., Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. Am. Mineral. 99 (2014), 547–550. 79. Zharkov, V.N., Kalinin, V.A., Equations of State of Solids at High Pressures and Temperatures. 1971, Consultants Bureau, New York, 257.