Инд. авторы: Doroshkevich A.G., Veksler I.V., Khromova E.A., Izbrodin I.A., Klemd R.
Заглавие: Trace-element composition of minerals and rocks in the belaya zima carbonatite complex (russia): implications for the mechanisms of magma evolution and carbonatite formation
Библ. ссылка: Doroshkevich A.G., Veksler I.V., Khromova E.A., Izbrodin I.A., Klemd R. Trace-element composition of minerals and rocks in the belaya zima carbonatite complex (russia): implications for the mechanisms of magma evolution and carbonatite formation // Lithos. - 2017. - Vol.284-285. - P.91-108. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2017.04.003; РИНЦ: 29509508; SCOPUS: 2-s2.0-85018616811; WoS: 000405252300006;
Реферат: eng: The nature of petrogenetic links between carbonatites and associated silicate rocks is a matter of discussion for several decades and still remains controversial among igneous petrologists. The Belaya Zima plutonic complex in southern Siberia is a typical intrusion, in which carbonatites are spatially and temporally associated with the ijolite series rocks and nepheline syenites. In this study we use whole-rock compositions and trace element characteristics of the major and accessory minerals for reconstructing the magmatic evolution of the complex and clarifying the origin of carbonatites. We conclude that the observed gradual increase of Zr, Nb and REE concentrations in the magma is consistent with the process of extensive fractional crystallization and gradual transition from silicate rocks to carbonatites, and inconsistent with the formation of carbonatites by liquid immiscibility. Magma differentiation by fractional crystallization continued during the carbonatite formation. The textural and analytical evidence indicates that the early calcitic carbonatites evolved to dolomitic and ankeritic carbonatites. In addition, maximum Nb and Zr concentrations occur in the calcitic carbonatite, whereas the REE content increases in the dolomitic and ankeritic facies.
Ключевые слова: carbonatites; REE and Nb; evolution; Alkaline silicate rocks;
Издано: 2017
Физ. характеристика: с.91-108
Цитирование: 1. Andersen, T., Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: REE and isotopic evidence from the Fen Complex, Southeast Norway. Chemical Geology 65 (1987), 147–166, 10.1016/0168-9622(87)90070-4. 2. Andreeva, I.A., Carbonatitic melts in olivine and magnetite from rare-metal carbonatite of the Belaya Zima alkaline carbonatite complex (East Sayan, Russia). Doklady Earth Sciences 455:2 (2014), 436–440, 10.1134/S1028334X14050018. 3. Andreeva, I.A., Kovalenko, V.I., Kononkova, N.N., Chemical composition of the magmas (melt inclusions) of melilite-bearing nephelinite of the Belaya Zima carbonatite complex (Eastern Sayan). Doklady Earth Sciences 394:4 (2004), 518–522. 4. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., Kononkova, N.N., Compositions of magmas, formation conditions, and genesis of carbonate-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan. Journal of Petrology 15 (2007), 551–574, 10.1134/S0869591107060033. 5. Atencio, D., Andrade, M.B., Christy, A.G., Giere, R., Karatashov, P.M., The pyrochlore supergroup of minerals: nomenclature. Canadian Mineralogist 48 (2010), 673–698, 10.3749/canmin.48.3.673. 6. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143 (2002), 602–622, 10.1007/s00410-002-0364-7. 7. Brassinnes, S., Balaganskaya, E., Demaiffe, D., Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi (Kola Peninsula, Russia). A LA–ICP-MS study of apatite. Lithos 85 (2005), 76–92, 10.1016/j.lithos.2005.03.017. 8. Brooker, R.A., The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study. Journal of Petrology 39 (1998), 1905–1915, 10.1093/petroj/39.11-12.1905. 9. Bühn, B., Wall, F., Le Bas, M.J., Rare-earth element systematics of carbonatitc fluorapatites, and their significance for carbonatite magma evolution. Contributions to Mineralogy and Petrology 141 (2001), 572–591, 10.1007/s004100100261. 10. Bühn, B., Rankin, A.H., Dulski, P., The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chemical Geology 186 (2002), 75–98, 10.1016/S0009-2541(01)00421-1. 11. Bulakh, A.G., Ivanikov, V.V., Carbonatites of the Turiy Peninsula, Kola: role of magmatism and of metasomatism. Canadian Mineralogist 34 (1996), 403–409. 12. Chakhmouradian, A.R., High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chemical Geology 235 (2006), 138–160, 10.1016/j.chemgeo.2006.06.008. 13. Chakhmouradian, A.R., Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K., Sidhu, R., Yang, P., Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geology Reviews 64 (2015), 642–666, 10.1016/j.oregeorev.2014.04.020. 14. Chakhmouradian, A.R., Reguir, E.P., Couëslan, C., Yang, P., Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Mineralogy and Petrology 110 (2016), 361–377. 15. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický, J., Mumin, A.H., Yang, P., Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274 (2017), 188–213. 16. Cooper, A.F., Collins, A.K., Palin, J.M., Spratt, J., Mineralogical evolution and REE mobility during crystallisation of ancylite-bearing ferrocarbonatite, Haast River, New Zealand. Lithos 217 (2015), 324–337, 10.1016/j.lithos.2015.01.005. 17. Dawson, J.B., Hinton, R.W., Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineralogical Magazine 67 (2003), 921–930, 10.1180/0026461036750151. 18. Doroshkevich, A.G., Petrology of Carbonatites and Carbonate-bearing Alkaline Complexes of the Western Transbaikalia. (Dissertation), 2013, GIN SB RAS. 19. Doroshkevich, A.G., Veksler, I.V., Izbrodin, I.A., Ripp, G.S., Khromova, E.A., Posokhov, V.F., Travin, A.V., Vladykin, N.V., Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: implications for the sources of the parental magma and metasomatizing fluids. Journal of Asian Earth Sciences 116 (2016), 81–96, 10.1016/j.jseaes.2015.11.011. 20. Eby, G.N., Abundance and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec. Geochimica et Cosmochimica Acta 39 (1975), 597–620, 10.1016/0016-7037(75)90005-8. 21. Frolov, A.A., Belov, S.V., The complex carbonatite deposits of the Ziminski ore district (Eastern Sayan, Russia). Geology of Ore Deposits 41 (1999), 94–113. 22. Frolov, A.A., Tolstov, A.P., Belov, C.V., Carbonatite Deposits of Russia. 2003, NIA Priroda, Moscow. 23. Gittins, J., The origin and evolution of carbonatite magmas. Bell, K., (eds.) Carbonatites Genesis and Evolution, 1989, Unwin-Hyman, London, 580–600. 24. Gittins, J., Jago, B.C., Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania. Mineralogical Magazine 62:6 (1998), 759–768, 10.1180/002646198548142. 25. Gladkochub, D.P., Mazukabzov, A.M., Stanevich, A.M., Donskaya, T.V., Motova, Z.L., Vanin, V.A., Precambrian sedimentation in the Urik–Iya Graben, southern Siberian Craton: main stages and tectonic settings. Geotectonics 48:5 (2014), 359–370, 10.1134/S0016852114050033. 26. Guzmics, T., Mitchell, R.H., Szabó, C., Berkesi, M., Milke, R., Ratter, K., Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contributions to Mineralogy and Petrology 164 (2012), 101–122, 10.1007/s00410-012-0728-6. 27. Hammouda, T., Chantel, J., Devidal, J.-L., Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochimica et Cosmochimica Acta 74 (2010), 7220–7235, 10.1016/j.gca.2010.09.032. 28. Hodgson, N.A., Le Bas, M.J., The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineralogical Magazine 56:383 (1992), 201–214, 10.1180/minmag.1992.056.383.06. 29. Hogarth, D.D., Classification and nomenclature of the pyrochlore group. American Mineralogist 62 (1977), 403–410. 30. Hornig-Kjarsgaard, I., Rare earth elements in sovitic carbonatites and their mineral phases. Journal of Petrology 39 (1998), 2105–2121, 10.1093/petroj/39.11-12.2105. 31. Huang, Y.-M., Hawkesworth, C.J., van Calsternen, F., McDermott, F., Geochemical characteristics of the Jacupiranga carbonatites, Brazil. Chemical Geology 119 (1995), 79–99, 10.1016/0009-2541(94)00093-N. 32. Kapustin, Y.L., Composition of pyroxenes from carbonatites. Novye Dannye o Mineralakh 34 (1987), 63–70. 33. Khodyreva, A.I., Distribution of tantalum and niobium in weathering crust minerals of carbonatites of Eastern Siberia. Smakin, B.M., (eds.) Voprosy mineralogii gornykh porod i rud vostochnoi Sibiri, 1972, Institute of Geochemistry, Irkutsk, 90–96. 34. Khromova, E.A., Doroshkevich, A.G., Sharygin, V.V., Izbrodin, I.A., Features of evolution of the pyrochlore-group minerals composition in carbonatites of the Belaya Zima massif (Eastern Sayan). Zapiski RMO 1 (2017), 84–102. 35. Kjarsgaard, B.A., Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 Gpa. Journal of Petrology 39 (1998), 2061–2075, 10.1093/petroj/39.11-12.2061. 36. Kjarsgaard, B.A., Hamilton, D.L., The genesis of carbonatites by immiscibility. Bell, K., (eds.) Carbonatites: Genesis and Evolution, 1989, Unwin-Hyman, London, 388–404. 37. Klemme, S., Dalpé, C., Trace-element partitioning between apatite and carbonatite melt. American Mineralogist 88 (2003), 639–646, 10.2138/am-2003-0417. 38. Kravchenko, S.M., Bagdasarov, Yu.A., Geochemistry, Mineralogy and Genesis of Apatite-bearing Massifs (Maymeicha–Kotui Carbonatite Province). 1987, Nauka, Moscow. 39. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, Y.I., Ilyinskiy, G.A., Sergeyev, A.C., Abakumova, N.B., The Caledonian Complex of the Ultrabasic Alkalic Rocks and Carbonatites of the Kola Peninsula and Northern Karelia. 1965, Nedra, Moscow. 40. Lee, W., Wyllie, P.J., Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO–FeO)–(Na2O–K2O)–(SiO2–Al2O3vTiO2)–CO2. Journal of Petrology 39 (1998), 495–517. 41. Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., Ulmer, P., Hametner, K., Günther, D., Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. Chemical Geology 321:6 (2012), 96–112, 10.1016/j.chemgeo.2012.05.019. 42. McDonough, W.F., Sun, S.-s., The composition of the earth. Chemical Geology 120 (1995), 223–253, 10.1016/0009-2541(94)00140-4. 43. Mitchell, R.H., Pyroxenes of the Fen alkaline complex, Norway. American Mineralogist 65 (1980), 45–54. 44. Mitchell, R.H., Dawson, J.B., Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152 (2012), 40–46, 10.1016/j.lithos.2012.01.006. 45. Nasraoui, M., Bilal, E., Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of deferent alteration stages. Journal of Asian Earth Sciences 18 (2000), 237–251, 10.1016/S1367-9120(99)00056-5. 46. Nielsen, T.F.D., Solovova, I.P., Veksler, I.V., Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex. Contributions to Mineralogy and Petrology 126 (1997), 331–344, 10.1007/s004100050254. 47. Panina, L.I., Multiphase carbonate-salt immiscibility in carbonate melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contributions to Mineralogy and Petrology 150 (2005), 19–36, 10.1007/s00410-005-0001-3. 48. Pozharitskaya, L.K., Mineralogical–petrological peculiarities of carbonatite massifs. Geology of Rare Elements 17 (1962), 70–86. 49. Pozharitskaya, L.K., Samoylov, V.S., Petrology, Mineralogy and Geochemistry of Eastern Siberia. 1972, Nauka, Moscow. 50. Prowatke, S., Klemme, S., Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta 70 (2006), 4513–4527, 10.2138/am-2003-0417. 51. Rankin, A.H., Le Bas, M.J., Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature 250 (1974), 206–209, 10.1038/250206a0. 52. Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P., Zaitsev, A.N., Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Canadian Mineralogist 46 (2008), 879–900, 10.3749/canmin.46.4.879. 53. Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Malkovets, V.G., Yang, P., Major and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112 (2009), 372–384, 10.1016/j.lithos.2009.05.023. 54. Reguir, E.P., Chakhmouradian, A.R., Pisiak, L., Halden, N.M., Yang, P., Xu, C., Kynický, J., Couëslan, C.G., Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: implications for element partitioning and evolution of carbonatites. Lithos 131 (2012), 27–45, 10.1016/j.lithos.2011.10.003. 55. Rosatelli, G., Wall, F., Stoppa, F., Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy). Lithos 99 (2007), 229–248, 10.1007/s00410-010-0499-x. 56. Rosatelli, G., Wall, F., Stoppa, F., Brilli, M., Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses. Contributions to Mineralogy and Petrology 160 (2010), 645–661, 10.1007/s00410-010-0499-x. 57. Sharygin, V.V., Kamenetsky, V.S., Zaitsev, A.N., Kamenetsky, M.B., Silicate–natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: melt inclusion study. Lithos 152 (2012), 23–39, 10.1016/j.lithos.2012.01.021. 58. Sokolov, S.V., Phase composition of melt inclusions in monticellite and niocalite from carbonatites of the Oka complex (Quebec, Canada): confirmation of silicate–carbonate liquid immiscibility. Abstracts of ECROFI-XIX, 2007, University of Bern, Switzerland, 202 (17-20 July). 59. Solovova, I.P., Girnis, A.V., Silicate–carbonate liquid immiscibility and crystallization of carbonate and K-rich basaltic magma: insights from melt and fluid inclusions. Mineralogical Magazine 76 (2012), 411–439, 10.1180/minmag.2012.076.2.09. 60. Stoppa, F., Liu, Yu., Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. European Journal of Mineralogy 7 (1995), 391–402. 61. Stoppa, F., Woolley, A.R., The Italian carbonatites: field occurrence, petrology and regional significance. Mineralogy and Petrology 59 (1997), 43–67, 10.1007/BF01163061. 62. Sun, S.-s., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42 (1989), 313–345, 10.1144/GSL.SP.1989.042.01.19. 63. Tyler, R.C., King, B.C., The pyroxenes of the alkaline igneous complexes of eastern Uganda. Mineralogical Magazine 36 (1967), 5–22. 64. Van Achterbergh, E., Ryan, C.G., Griffin, W.L., GLITTER Version 3.0, On-line Interactive Data Reduction for LA–ICPMS. 2000, Macquarie Research Ltd. 65. Veksler, I.V., Petibon, C., Jenner, G., Dorfman, A.M., Dingwell, D.B., Trace element partitioning in immiscible silicate and carbonate liquid systems: an initial experimental study using a centrifuge autoclave. Journal of Petrology 39 (1998), 2095–2104, 10.1093/petroj/39.11-12.2095. 66. Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., Dingwell, D.B., Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta 79 (2012), 20–40, 10.1016/j.gca.2011.11.035. 67. Viladkar, S.G., Pawaskar, P.B., Rare earth element abundances in carbonatites and fenites of the Newania complex, Rajasthan, India. Geological Society of America Bulletin 61 (1989), 113–122. 68. Vladykin, N.V., Morikyo, T., Miuazaki, T., Geochemistry of Sr and Nd isotopes in the carbonatites of Siberia and Mongolia and some geodynamic implications. Vladykin, N.V., (eds.) Deep-seated Magmatizm, Its Sources and Their Relation to Plume Processes, 2005, Institute of geography SD RAS Ltd, Irkutsk, 89–107. 69. Watson, E.B., Green, T.H., Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters 56 (1981), 405–421, 10.1016/0012-821X(81)90144-8. 70. Woolley, A.R., Kempe, D.R.C., Carbonatites: nomenclature, average chemical compositions, and element distribution. Bell, K., (eds.) Carbonatites: Genesis and Evolution, 1989, Unwin Hyman Ltd, London, 1–14. 71. Woolley, A.R., Kjarsgaard, B.A., Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Canadian Mineralogist 46 (2008), 741–752, 10.3749/canmin.46.4.741. 72. Woolley, A.R., Bailey, K., Francesca, C., Rosatelli, G., Stoppa, F., Wall, F., Carbonate- rich pyroclastic rocks from central Appennines: carbonatites or carbonated rocks. a commentary. Periodico di Mineralogia 74 (2005), 183–194. 73. Wu, Fy-Yu, Mitchell, R.G., Li, Q.-L., Zhang, C., Yang, Yu-H., Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, Northwestern Ontario, Canada. Geological Magazine, 2016, 1–20, 10.1017/S0016756815001120. 74. Wyllie, P.J., Lee, W.-J., Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. Journal of Petrology 39 (1998), 1885–1993, 10.1093/petroj/39.11-12.1885. 75. Xu, Ch., Kynicky, J., Chakhmouradian, A.R., Campbell, I.H., Allen, Ch.M., Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118 (2010), 145–155, 10.1016/j.lithos.2010.04.003. 76. Yarmolyuk, V.V., Kovalenko, V.I., Sal'nikova, E.B., Nikiforov, A.V., Kotov, A.B., Vladykin, N.V., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian craton. Doklady Earth Sciences 404:7 (2005), 1031–1037. 77. Zaitzev, A.N., Willaims, T., Jeffries, T., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R., Borozdin, A.P., Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews 61 (2014), 204–225, 10.1016/j.oregeorev.2014.02.002.