Цитирование: | 1. Thapar, N., Using Compression for Source-Based Classification of Text, Master Thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, USA, 2001.
2. Kukushkina, O.V., Polikarpov, A.A., and Khmelev, D.V., Using Literal and Grammatical Statistics for Authorship Attribution, Probl. Peredachi Inf., 2001, vol. 37, no. 2, pp. 96–109 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 2, pp. 172–184].
3. Khmelev, D.V., Complexity Approach to Disputed Authorship Attribution, in Russian Language: Contemporaneity and Fates in History (Proc. Int. Congress of Russian Language Researchers, Moscow, Mar. 13–16, 2001), pp. 426–427.
4. Cilibrasi, R. and Vitányi, P.M.B., Clustering by Compression, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 4, pp. 1523–1545.
5. Cilibrasi, R., Vitányi, P., and deWolf, R., Algorithmic Clustering of Music Based on String Compression, Computer Music J., 2004, vol. 28, no. 4, pp. 49–67.
6. Li, M., Chen, X., Li, X., Ma, B., and Vitányi, P.M.B., The Similarity Metric, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 12, pp. 3250–3264.
7. Ryabko, B., Astola, J., and Malyutov, M., Compression-Based Methods of Statistical Analysis and Prediction of Time Series, New York: Springer, 2016.
8. Teahan, W.J. and Harper, D.J., Using Compression-Based Language Models for Text Categorization, Language Modeling for Information Retrieval, Croft, W.B. and Lafferty, J., Eds., Dordrecht: Kluwer, 2003, pp. 141–165.
9. Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.
10. Győrfi, L., Morvai, G., and Yakowitz, S.J., Limits to Consistent On-line Forecasting for Ergodic Time Series, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 2, pp. 886–892.
|