Инд. авторы: | Zhukov V.P., Bulgakova N.M. |
Заглавие: | Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials |
Библ. ссылка: | Zhukov V.P., Bulgakova N.M. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials // Proceedings of SPIE - The International Society for Optical Engineering. - 2017. - Vol.10228. - Art.UNSP 102280D. - ISSN 0277-786X. |
Внешние системы: | DOI: 10.1117/12.2265399; РИНЦ: 31035826; SCOPUS: 2-s2.0-85029148278; WoS: 000407115600008; |
Реферат: | eng: Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called 'lighthouse effect', the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials. © 2017 SPIE. |
Ключевые слова: | Ultrashort pulses; Three-dimensional solutions; Spatiotemporal coupling; Pulse-front tilt; Nonlinear materials; Gaussian lasers; Free electron; Focused femtosecond lasers; Computational resources; Ultrafast lasers; Optical glass; Nonlinear optics; Nonlinear equations; Maxwell equations; Lighthouses; Light propagation; Light absorption; Laser beams; Glass; Gaussian beams; Fused silica; Electrons; Electromagnetic wave propagation in plasma; Electromagnetic wave absorption; Electric fields; pulse front tilt; non-linear materials; Maxwell's equations; lighthouse effect; Laser beam propagation; glass; Gaussian laser pulses; free electron plasma; Laser pulses; |
Издано: | 2017 |
Конференция: | Название: 7th Nonlinear Optics and Applications Conference Город: Prague Страна: Czech Republic Даты проведения: 2017-04-24 - 2017-04-27 |
Цитирование: | 1. Misawa, H. and Juodkazis, S., [3D Laser Microfabrication: Principles and Applications], Wiley-VCH Verlag GmbH, Weinheim (2006). 2. Gattass, R. R. and Mazur, E., "Femtosecond laser micromachining in transparent materials, " Nat. Photon. 2, 219-225 (2008). 3. Yalisove, S. M., Sugioka K. and Grigoropoulos, C. P., "Advances and opportunities of ultrafast laser synthesis and processing, " MRS Bulletin 41 (12), 955-959 (2016). 4. Linz, N., Freidank, S., Liang, X.-X. and Vogel, A., "Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery, " Phys. Rev. B 94, 024113 (2016). 5. Kazansky, P. G., Yang, W. and Bricchi, E., ""Quill" writing with ultrashort light pulses in transparent materials, " Appl. Phys. Lett. 90, 151120 (2007). 6. Vitek, D. N., Block, E., Bellouard, Y., Adams, D. E., Backus, S., Kleinfeld, D., Durfee, C. G. and Squier J. A., "Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials, " Opt. Express 18, 24673-24678 (2010). 7. Salter, P. S. and Booth, M. J., "Dynamic control of directional asymmetry observed in ultrafast laser direct writing, " Appl. Phys. Lett. 101, 141109 (2012). 8. Jing, Ch., Wang, Zh. and Cheng, Ya, "Characteristics and applications of spatiotemporally focused femtosecond laser pulses, " Appl. Sci. 6, 428 (2016). 9. Poumellec, B, Lancry, M., Desmarchelier, R., Hervé, E. and Bourguignon, B., "Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass" Light: Sci. Appl. 5, e16178 (2016). 10. Song, H., Dai, Y., Song, J., Ma, H. Yan, X. and Ma, G. "Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process, " Appl. Phys. A 123, 255 (2017). 11. Akturk, S., Gu, X., Bowlan, P. and Trebino, R., "Spatio-temporal couplings in ultrashort laser pulses, " J. Opt. 12, 093001 (2010). 12. Wheeler, J. A., Borot, A., Monchocé, S., Vincenti, H., Ricci, A., Malvache, A., Lopez-Martens, R. and Quéré, F., "Attosecond lighthouses from plasma mirrors, " Nat. Photon. 6, 829-833 (2012). 13. Fülöp, J. A. and Hebling, J., "Applications of Tilted-Pulse-Front Excitation, " [Recent Optical and Photonic Technologies] edited by Ki Young Kim, InTech, 207-230 (2010). 14. Popp, A., Vieira, J., Osterhoff, J., Major, Zs., Hörlein, R., Fuchs, M., Weingartner, R., Rowlands-Rees, T. P., Marti, M., Fonseca, R. A., Martins, S. F., Silva, L. O., Hooker, S. M., Krausz, F., Grüner, F. and Karsch, S., "All-optical steering of laser-wakefield-accelerated electron beams, " Phys. Rev. Lett. 105, 215001 (2010). 15. Kammel, R., Ackermann, R., Thomas, J., Götte, J., Skupin, S., Tünnermann, A. and Nolte. S., "Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing, " Light: Science and Applications 3, e169 (2014). 16. Bulgakova, N. M., Zhukov, V. P. and Meshcheryakov, Y. P., "Theoretical treatments of ultrashort pulse laser processing of transparent materials: Towards understanding the volume nanograting formation and "quill" writing effect, " Appl. Phys. B 113, 437-449 (2013). 17. Bulgakova, N. M., Zhukov, V. P., Sonina, S. V. and Meshcheryakov, Y. P., "Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful" J. Appl. Phys. 118, 233108 (2015). 18. Bulgakova N. M., Zhukov, V. P., Meshcheryakov, Y. P., Gemini, L., Brajer, J., Rostohar, D. and Mocek, T., "Pulsed laser modification of transparent dielectrics: what can be foreseen and predicted by numerical simulations" J. Opt. Soc. Am. B 31 (11), C8-C14 (2014). 19. Akturk, S., Gu, X., Gabolde, P. and Trebino, R., "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams, " Opt. Express 13 (21), 8642-8661 (2005). 20. Petropoulos, P. G., "Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates, " SIAM J. Appl. Math. 60 (3), 1037-1058 (2000). |