Инд. авторы: Bulgakova N.M., Zhukov V.P., Fedoruk M.P., Rubenchik A.M.
Заглавие: Non-linear effects during interaction of femtosecond doughnut-shaped laser pulses with glasses: overcoming intensity clamping
Библ. ссылка: Bulgakova N.M., Zhukov V.P., Fedoruk M.P., Rubenchik A.M. Non-linear effects during interaction of femtosecond doughnut-shaped laser pulses with glasses: overcoming intensity clamping // Proceedings of SPIE - The International Society for Optical Engineering. - 2017. - Vol.10228. - Art.UNSP 102280C. - ISSN 0277-786X.
Внешние системы: DOI: 10.1117/12.2265307; РИНЦ: 31051498; SCOPUS: 2-s2.0-85029166163; WoS: 000407115600007;
Реферат: eng: Interaction of femtosecond laser pulses with a bulk glass (fused silica as an example) has been studied numerically based on non-linear Maxwell's equations supplemented by the hydrodynamics-type equations for free electron plasma for the cases of Gaussian linearly-polarized and doughnut-shaped radially-polarized laser beams. For Gaussian pulses focused inside glass (800 nm wavelength, 45 fs duration, numerical aperture of 0.25), the free electron density in the laser-excited region remains subcritical while the locally absorbed energy density does not exceed ∼2000 J/cm3 in the range of pulse energies of 200 nJ - 2 μJ. For doughnut-shaped pulses, the initial high-intensity ring of light is shrinking upon focusing. Upon reaching a certain ionization level on its way, the light ring splits into two branches, one of which shrinks swiftly toward the beam axis well before the geometrical focus, leading to generation of supercritical free electron density. The second branch represents the laser light scattered by the electron plasma away from the beam axis. The final laserexcited volume represents a tube of 0.5-1 μm in radius and 10-15 μm long. The local maximum of absorbed energy can be more than 10 times higher compared to the case of Gaussian beams of the same energy. The corresponding pressure levels have been evaluated. It is anticipated that, in the case of doughnut-shaped pulses, the tube-like shape of the deposited energy should lead to implosion of material that can be used for improving the direct writing of high-refractive index optical structures inside glass or for achieving extreme thermodynamic states of matter.
Ключевые слова: Non-linear processes; Maxwell's equations; Laser beam propagation; glass; Gaussian laser pulses; free electron plasma; doughnut-shaped laser pulses;
Издано: 2017
Конференция: Название: 7th Nonlinear Optics and Applications Conference
Город: Prague
Страна: Czech Republic
Даты проведения: 2017-04-24 - 2017-04-27
Цитирование: 1. Davis, K. M., Miura, K., Sugimoto, N. and Hirao, K. "Writing waveguides in glass with a femtosecond laser, " Opt. Lett. 21, 1729-1731 (1996). 2. Schaffer, C. B., Brodeur, A., Garca, J. F. and Mazur, E., "Micromachining bulk glass by use of femtosecond laser pulses with nanoJoule energy, " Opt. Lett. 26, 93-95 (2001). 3. Will, M., Nolte, S., Chichkov, B. N. and Tünnermann, A., "Optical Properties of Waveguides Fabricated in Fused Silica by Femtosecond Laser Pulses, " Appl. Optics 41, 4360-4364 (2002). 4. Gattass, R. R. and Mazur, E., "Femtosecond laser micromachining in transparent materials, " Nature Photon. 2, 219-225 (2008). 5. Mishchik, K., D'Amico, C., Velpula, P. K., Maclair, C., Boukenter, A., Ouerdane, Y. and Stoian, R., "Ultrafast laser induced electronic and structural modifications in bulk fused silica, " J. Appl. Physics 114, 133502 (2013). 6. Gamaly, E. G., Vailionis, A., Mizeikis, V., Yang, W., Rode, A. V. and Juodkazis, S., "Warm dense matter at the bench top: Fs-laser-induced confined micro-explosion, " High Energy Density Physics 8, 13-17 (2012). 7. Couairon, A., and Mysyrowicz, A., "Femtosecond filamentation in transparent media, " Phys. Rep. 441, 47-189 (2007). 8. Burakov, I. M., Bulgakova, N. M., Stoian, R., Mermillod-Blondin, A., Audouard, E., and Rosenfeld, A., "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses, " J. Appl. Phys. 101, 043506 (2007). 9. Rayner, D. M., Naumov, A. and Corkum, P. B., "Ultrashort pulse non-linear optical absorption in transparent media, " Opt. Express 13, 3208-3217 (2005). 10. Popov, K. I., McElcheran, C., Briggs, K., Mack S., and Ramunno, L., "Morphology of femtosecond laser modification of bulk dielectrics, " Opt. Express 19, 271-282 (2010). 11. Schmitz, H., and Mezentsev, V., "Full-vectorial modeling of femtosecond pulses for laser inscription of photonic structures, " J. Opt. Soc. Am. B 29, 1208-1217 (2012). 12. Bulgakova, N. M., Zhukov, V. P. and Meshcheryakov, Yu. P., "Theoretical treatments of ultrashort pulse laser processing of transparent materials: Towards understanding the volume nanograting formation and "quill" writing effect, " Appl. Phys. B 113, 437-449 (2013). 13. Wang, P., Slipchenko, M. N., Mitchell, J., Yang, C., Potma, E. O., Xu, X and Cheng, J.-X., "Far-field imaging of non-fluorescent species with subdifruction resolution, " Nat. Photon. 7, 449-453 (2013). 14. Shvedov, V., Davoyan, A. R., Hnatovsky, C., Engheta, N. and Krolikowski, W., "A long-range polarizationcontrolled optical tractor beam, " Nat. Photon. 8, 846-850 (2014). 15. Zhukov, V. P., Rubenchik, A. M., Fedoruk, M. P. and Bulgakova, N. M., "Interaction of doughnut-shaped laser pulses with glasses, " J. Opt. Soc. Am. B 34, 463-471 (2017). 16. Polynkin, P., "Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics, " Appl. Phys. A 114, 143-149 (2014). 17. Bulgakova, N. M., Zhukov, V. P., Sonina, S. V. and Meshcheryakov, Y. P., "Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful" J. Appl. Phys. 118, 233108 (2015). 18. Keldysh, L. V., "Ionization in the field of a strong electromagnetic wave, " Sov. Phys. JETP 20, 1307-1314 (1965). 19. Meshcheryakov, Yu. P., Shugaev, M. V., Mattle, T., Lippert, T. and Bulgakova, N. M., "Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer, " Appl. Phys. A 113, 521-529 (2013). 20. Grojo, D., Gertsvolf, M., Lei, S., Barillot, T., Rayner, D. M. and Corkum, P. B., "Exciton-seeded multiphoton ionization in bulk SiO2, " Phys. Rev. B 81, 212301 (2010). 21. Shugaev, M. V., Wu, Ch., Armbruster, O., Naghilou, A., Brouwer, N., Ivanov, D. S., Derrien, T. J.-Y., Bulgakova, N. M., Kautek, W., Rethfeld, B. and Zhigilei, L. V., "Fundamentals of ultrafast laser-material interaction, " MRS Bulletin 41, 960-968 (2016). 22. Juodkazis, S., Vailionis, A., Gamaly, E. G., Rapp, L., Mizeikis, V. and Rode, A. V., "Femtosecond laserinduced confined microexplosion: tool for creation high-pressure phases, " MRS Adv. 1, 1149-1155 (2016).