Инд. авторы: | Буслов М.М. |
Заглавие: | Террейновая тектоника центрально-азиатского складчатого пояса |
Библ. ссылка: | Буслов М.М. Террейновая тектоника центрально-азиатского складчатого пояса // Геодинамика и тектонофизика. - 2014. - Т.5. - № 3. - С.641-665. - EISSN 2078-502X. |
Внешние системы: | РИНЦ: 22441989; |
Реферат: | eng: The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction - collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal) autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan-Baikal continent. The base of the Kazakhstan-Baikal continent was formed in the Vend-Cambrian due to subduction of the oceanic crust of the Paleo-Asian Ocean, including the Precambrian microcontinents and terrains of the Gondvana group, underneath the south-eastern margin of the Siberian continent (in the current coordinates). Due to subduction followed by collision of the microcontinents with the Kazakhstan-Tuva-Mongolia island arc, the crust had consolidated, and a complex continent was formed. Another major plate is the plate of the Paleo-Pacific Ocean. It is characterized by the long-term tectono-magmatic evolution without any involvement of the continental crust and by complex processes of the formation of the continental margins. Its evolution resulted in the formation of the Vend-Paleozoic continental margin complexes of the western segment of the Siberian continent which comprise the Vend-Cambrian Kuznetsk-Altai island arc and a complex of rocks of the Ordovic-Early Devonian passive margin and the Devon-Early Carbonic active margin. In the accretional wedges of the Kuznetsk-Altai island arc, abundant are only fragments of the Vend-Early Cambrian oceanic crust including ophiolites and paleooceanic uplifts. The contemporary analogue of the Central Asian folded belt is the south-eastern margin of Asia, represented by the junction area of the Indo-Australian and Pacific plates. rus: Концепция террейнового анализа предусматривает прежде всего возможность сближения фрагментов (террейнов) самых различных геодинамических обстановок, принадлежащих различным плитам. В связи с этим террейновый анализ дополняет теорию литосферных плит в решении вопросов геодинамики и тектоники сложнопостроеных регионов земной коры, к числу которых относится Центрально-Азиатский складчатый пояс. Сформированные террейновые структуры являются результатом комбинированных движений в системе «фронтальная» и (или) «косая» субдукция - коллизия. При изучении конкретных геологических объектов в первую очередь нужно доказать их автохтонность (вертикальную и латеральную) относительно друг друга, а затем выполнять палеогеодинамические, палеотектонические и палеогеографические реконструкции. Несомненно, такой подход является очень сложным и требует разноплановых исследований (структурных, палеонтолого-стратиграфических, палеогеографических, литологических, геохимических, геохронологических, палеомагнитных и др.). Лишь на основе корреляции данных, полученных при междисциплинарном изучении регионов, можно получить качественную характеристику геологического строения и избежать ошибок, связанных со «стратиграфическим» подходом в решении как региональных, так и глобальных проблем геодинамики и тектоники складчатых областей. Террейновый анализ структуры Центрально-Азиатского складчатого пояса позволяет утверждать, что в нем тектонически совмещены окраинно-континентальные комплексы пород, сформированные при эволюции двух крупнейших океанических плит. Одна из них, плита Палеоазиатского океана, аналог современного Индо-Антлантического сегмента Земли, характеризуется наличием континентальных блоков в составе океанической коры и формированием океанических бассейнов в результате деструкции Родинии и Г ондваны. В результате ее эволюции происходили процессы распада суперконтинентов и повторное объединение блоков в составе Казахстано-Байкальского континента. Фундамент Казахстано-Байкальского континента сформирован в венде-кембрии в результате субдукции под юго-восточную окраину Сибирского континента (в современных координатах) океанической коры Палеоазиатского океана, включающей докембрийские микроконтиненты и террейны гондванской группы. Субдукция и последующая коллизия микроконтинентов и террейнов с Казахстано-Тувино-Монгольской островной дугой привели к консолидации земной коры и формированию составного континента. Другая плита, Палеопацифики, аналог современного Тихоокеанского сегмента Земли, характеризуется длительной тектономагматической эволюцией без участия континентальной коры и сложными процессами формирования материковых окраин. В результате его эволюции созданы венд-палеозойские окраинно-континентальные комплексы западной части Сибирского континента, состоящие из венд-кембрийской Кузнецко-Алтайской островной дуги, комплексов пород ордовикско-раннедевонской пассивной окраины и девонско- раннекарбоновой активной окраины. В аккреционных клиньях Кузнецко-Алтайской островной дуги широко представлены только фрагменты вендско-раннекембрийской океанической коры, состоящей из офиолитов и палеоокеанических поднятий. Современным аналогом Центрально-Азиатского складчатого пояса является юго-восточная окраина Азии, представленная зоной сочленения Индо-Австралийской и Тихоокеанской плит. |
Ключевые слова: | Shear faults; Гондвана; Палеопацифика; сдвиги; Central Asian folded area; Siberian continent; Kazakhstan-Baikal continent; Altai-Sayan Folded Area; terrain analysis; Paleo-Asian ocean; collision; accretion; subduction; Центрально-Азиатская складчатая область; Сибирский континент; Казахстано-Байкальский континент; Алтае-Саянская складчатая область; террейновый анализ; Палеоазиатский океан; коллизия; аккреция; субдукция; Paleo-Pacific ocean; Gondvana; |
Издано: | 2014 |
Физ. характеристика: | с.641-665 |
Цитирование: | 1. Belichenko V.G., Sklyarov E.V., Dobretsov N.L., Tomurtogoo О., 1994. The geodynamic map of the Paleo-Asian Ocean. The eastern segment. Geologiya i geofizika (Russian Geology and Geophysics) 35 (7-8), 29-40 2. Berzin N.A., Dobretsov N.L., 1993. Geodynamic evolution of Southern Siberia in Late Precambrian-Early Paleozoic time. In: Reconstruction of the Paleoasian Ocean. VSP Intern. Sci. Publishers, Netherlands, p. 45-62 3. Berzin N.A., Kolman R.G., Dobretsov N.L., Zonenshain L.P., Syao Syuchan, Chang E.Z., 1994. The geodynamic map of the eastern segment of the Paleo-Asian Ocean // Russian Geology and Geophysics 35 (7-8), 8-28 4. Betekhtina О.А., 1983. The paleobiogeography of non-marine anisomyaria in Late Paleozoic. In: Environment and Life in Geological Past. Paleobiogeography and Paleoecology. Nauka, Novosibirsk, p. 98-107 5. Buslov M.M., 2011. Tectonics and geodynamics of the Central Asian fold belt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics 52 (1), 52-71. http://dx.doi.org/10.1016/j.rgg.2010.12.005. 6. Buslov M.M., Fujiwara Y., Safonova I.Yu., Okada Sh., Semakov N.N., 2000. The junction zone of the Gorny Altai and Rudny Altai terrains: structure and evolution. Geologiya i Geofizika (Russian Geology and Geophysics) 41 (3), 383-397. 7. Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Ming C., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A., 2013. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russian Geology and Geophysics 54 (10), 1250-1271. http://dx.doi.org/10.1016Zj.rgg. 2013.09.009. 8. Buslov M.M., Kokh D.A., De Grave J., 2008. Mesozoic-Cenozoic tectonics and geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from apatite fission-track data. Russian Geology and Geophysics 49 (9), 648-654. http://dx.doi.org/10. 1016/j.rgg.2008.01.006. 9. Buslov M.M., Ryabinin A.B., Zhimulev F.I., Travin A.V., 2009. Manifestations of the Late Carboniferous and Early Permian stages of formation of nappe-fold structures in the southern framework of the Siberian platform (East Sayany, South Siberia). Doklady Earth Sciences 428 (1), 1105-1108. http://dx.doi.org/10.1134/S1028334X09070149. 10. Buslov M.M., Watanabe T., 1996. Intrasubduction collision and its role in the evolution of an accretionary wedge: the Kurai zone of Gorny Altai, Central Asia. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (1), 82-93 11. Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Yu., Semakov N.N., Kiryanova A.P., 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. Journal of Asian Earth Sciences 23 (5), 655-671. http://dx.doi.org/10.1016/S1367-9120(03)00131-7. 12. Buslov M.M., Watanabe T., Smirnova L.V., Fujiwara I., Iwata K., de Grave J., Semakov N.N., Travin A.V., Kir’yanova A.P., Kokh D.A., 2003. Role of strike-slip faulting in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan regions. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (1-2), 49-75. 13. De Grave J., Buslov M.M., van den Haute P., 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences 29 (2-3), 188-204. http://dx.doi.org/10.1016/j.jseaes.2006.03.001. 14. Dewey J.F., Gass I.G., Curry G.B., Harris N.B.W., Sengor A.M.C. (Eds.), 1991. Allochthonous Terranes (Royal Society Discussion Volume). Cambridge University Press, Cambridge, 209 p. 15. Dewey J.F., Pitman W.C., Ryan W.B.F., Bonnin J., 1973. Plate tectonics and the evolution of the Alpine System. Geological Society of America Bulletin 84 (10), 3137-3180. http://dx.doi.org/10.1130/0016-7606(1973)84<3137:PTATEO>2.0. CO;2. 16. Didenko A.N., Mossakovsky А.А., Pechersky D.M., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1994. Geodynamics of Paleozoic Oceans of Central Asia. Geologiya i geofizika (Russian Geology and Geophysics) 35 (7-8), 59-75 17. Dobretsov N.L. (Ed.), 1988. Geology and Metamorphism of the Eastern Sayan. Nauka, Siberian Branch, Novosibirsk, 192 p. 18. Dobretsov N.L., 2003. Evolution of the structures of Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (1-2), 5-27. 19. Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71-82. http://dx.doi.org/10.1016/j.rgg.2006.12.006. 20. Dobretsov N.L., Buslov M.M., 2011. Problems of geodynamics, tectonics, and metallogeny of orogens. Russian Geology and Geophysics 52 (12), 1505-1515. http://dx.doi.org/10.1016/j.rgg.2011.11.012. 21. Dobretsov N.L., Buslov M.M., De Grave J., Sklyarov E.V., 2013. Interplay of magmatism, sedimentation, and collision processes in the Siberian craton and the flanking orogens. Russian Geology and Geophysics 54 (10), 1135-1149. http://dx.doi.org/10.1016/j.rgg.2013.09.001. 22. Dobretsov N.L., Buslov M.M., Delvaux D., Berzin N.A., Ermikov V.D., 1996. Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plume. International Geology Review 38 (5), 430-466. http://dx.doi.org/10.1080/00206819709465345. 23. Dobretsov N.L., Buslov M.M., Safonova I.Y., Kokh D.A., 2004. Fragments of oceanic islands in the Kurai and Katun’accretionary wedges of Gorny Altai. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (12), 1381-1403. 24. Dobretsov N.L., Buslov M.M., Uchio Yu., 2004. Fragment of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia: early stages of continental crustal growth of the Siberian continent in Vendian - Early Cambrian time. Journal of Asian Earth Sciences 23 (5), 673-690. http://dx.doi.org/10.1016/S1367-9120(03)00132-9. 25. Dobretsov N.L., Buslov M.M., Vernikovsky V.A., 2003. Neoproterosoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the breakup of Rodinia. Gondwana Research 6 (2), 143-159. http://dx.doi.org/10.1016/S1342-937X(05)70966-7. 26. Dobretsov N.L., Buslov M.M., Zhimulev F.I., 2005a. Cambrian-Ordovician tectonic evolution of the Kokchetav metamorphic belt, northern Kazakhstan. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (8), 785-795. 27. Dobretsov N.L., Buslov M.M., Zhimulev F.I., Travin A.V., Zayachkovsky A.A., 2006. Vendian-Early Ordovician geodynamic evolution and model for exhumation of ultrahigh-and high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan). Geologiya i Geofizika (Russian Geology and Geophysics) 47 (4), 424-440. 28. Dobretsov N.L., Simonov V.A., Buslov M.M., Kotlyarov A.V., 2005b. Magmatism and geodynamics of the Paleoasian ocean at the Vendian-Cambrian stage of its evolution. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (9), 933-951. 29. Fedorovsky V.S., Dobrzhenetskaya L.F., Molchanova T.V., Likhachev A.B., 1993. The new type of melange (Baikal, Olkhon region). Geotektonika (Geotectonics) (4), 30-45 30. Fedorovsky V.S., Vladimirov A.G., Khain E.V., Kargopolov S.A., Gibsher A.S., Izokh A.E., 1995. Tectonics, metamorphism and magmatism of Caledonian collisional zones in Central Asia. Geotektonika (Geotectonics) (3), 3-22 31. Gladkochub D.P., Stanevich A.M., Mazukabzov A.M., Donskaya T.V., Pisarevsky S.A., Nicoll G., Motova Z.L., Kornilova T.A., 2013. Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Russian Geology and Geophysics 54 (10), 1150-1163. http://dx.doi.org/10.10167j.rgg.2013.09.002. 32. Iwata K., Sennikov N.V., Buslov M.M., Obut O.T., Shokalskii S.P., Kuznetsov S.A., Ermikov V.D., 1997. Latter Cambrian -Early Ordovician age of the Zasuria basalt-siliceous-terrigenous formation (Northwestern Gorny Altai). Geologiya i Geofizika (Russian Geology and Geophysics) 38 (9), 1427-1444. 33. Jones D.L., Howell D.G., Coney P.J., Monger J.W.H., 1983a. Recognition, character, and analysis of tectonostratigraphic terranes in western North America. In: M. Hashimoto, S. Uyeda (Eds.), Accretion tectonics in the Circum-Pacific Regions. Terrapub, Tokyo, p. 21-35. 34. Jones D.L., Howell D.G., Coney P.J., Monger J.W.H., 1983b. Recognition, character, and analysis of tectonostratigraphic terranes in western North America. Journal of Geological Education 31 (4), 295-303. 35. Khain V.E., Lomize M.G., 1995. Geotectonics and Fundamentals of Geodynamics. Moscow State Univ., Moscow, 480 p. 36. Korobkin V.V., Buslov M.M., 2011. Tectonics and geodynamics of the western Central Asian Fold Belt (Kazakhstan Paleozoides). Russian Geology and Geophysics 52 (12), 1600-1618. http://dx.doi.org/10.1016/j.rgg.2011.11.011. 37. Kuzmichev A.B., 2004. The Tectonic History of the Tuva-Mongolia Massif: Early Baikalian, Late Baikalian and Early Caledonian Stages. Probel-2000, Moscow, 192 p. 38. Mossakovsky A.A., Pushcharovsky Yu.M., Ruzhentsev S.V., 1998. The Earth's major structural asymmetry. Geotectonics 32 (5), 339-353. 39. Mossakovsky А.А., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1993. The Central Asian folded belt: its geodynamic evolution and history. Geotektonika (Geotectonics) (6), 3-33 40. Parfenov L.M., Bulgatov A.N., Gordienko I.V., 1996. Terrains and the formation of orogenic belts in Transbaikalie. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) (4), 3-15 41. Parfenov L.M., Natapov L.M., Sokolov S.D., Tsukanov N.V., 1993a. Terrains and accretional tectonics of North-Eastern Asia. Geotektonika (Geotectonics) (1), 68-78 42. Parfenov L.M., Natapov L.M., Sokolov S.D., Tsukanov N.V., 1993b. Terrane analysis and accretion in northeast Asia. The Island Arc 2 (1), 35-54. http://dx.doi.org/10.1111/j.1440-1738.1993.tb00073.x. 43. Parfenov L.M., Nokleberg U.G., Khanchuk A.I., 1998. Principles of data consolidation and main divisions of the legend of the geodynamic map of Northern and Central Asia, the southern regions of the Russian Far East, Korea and Japan. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 17 (3), 3-13 44. Prokopiev A.V., Ershova V.B., Miller E.L., Khudoley A.K., 2013. Early Carboniferous paleogeography of the northern Verkhoyansk passive margin as derived from U-Pb dating of detrital zircons: role of erosion products of the Central Asian and Taimyr-Severnaya Zemlya fold belts. Russian Geology and Geophysics 54 (10), 1195-1204. http://dx.doi.org/ 10.1016/j.rgg.2013.09.005 45. Puchkov V.N., 2000. Paleogeodynamics of Southern and Middle Urals. UFA Dauria, Ufa, 146 p 46. Pushcharovsky Yu.M., 1997. The major tectonic asymmetry of Earth: Pacific Ocean and Indo-Atlantic segments and their relationships. In: Tectonic and Geodynamic Phenomena. Nauka, Moscow, p. 8-24 47. Safovona I.Yu., Buslov M.M., Kokh D.A., 2004. Oceanic crust fragments of the Paleo-Asian Ocean in Gorny Altai and Eastern Kazakhstan: geochemistry and structural positions. Litosfera (Lithosphere) (3), 84-96 48. Saveliev A.A., Astrakhantsev O.V., Knipper A.L., Sharaskin A.Ya., Savelieva G.N., 1998. Structure and deformation phases of the Northern Terminus of the Magnitogorsk Zone, Urals. Geotectonics 32 (3), 201-212. 49. Şengör A.M.C., Burke K.C.A., Dewey J.F., 1978. Rifts at high angles to orogenic belts: tests for their origin and the Upper Rhine Graben as an example. American Journal of Sciences 278 (1), 24-40. http://dx.doi.org/10.2475/ajs.278.1.24. 50. Şengör A.M.C., Natal’in B.A., Burtman V.S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364 (6435), 299-307. http://dx.doi.org/10.1038/364299a0. 51. Şengör A.M.G., Nataljin B.Б.А., Burtman V.S., 1994. The tectonic evolution of Altaides. Geologiya i geofizika (Russian Geology and Geophysics) 35 (7-8), 41-58 52. Simonov V.A., Dobretsov N.L., Buslov М.М., 1994. Boninite series in structures of the Paleoasian Ocean // Geology and Geophysics 35 (7-8), 82-199 53. Sklyarov E.V., Fedorovskii V.S., Gladkochub D.P., Vladimirov A.G., 2001. Synmetamorphic basic dikes as indicators of collision structure collapse in the Western Baikal region. Doklady Earth Sciences 381 (9), 1028-1033. 54. Vladimirov A.G., Kruk N.N., Vladimirov V.G., Gibsher A.S., Rudnev S.N., 2000. Synkinematic granites and collision-shear deformations in Western Sangilen (Southeastern Tuva). Geologiya i Geofizika (Russian Geology and Geophysics) 41 (3), 398-413. 55. Volkova N.I., Sklyarov E.V., 2007. High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russian Geology and Geophysics 48 (1), 83-90. http://dx.doi.org/10.1016Zj.rgg.2006.12.008. 56. Volkova N.I., Stupakov S.I., Simonov V.A., Tikunov Yu.V., 2004. Petrology of metabasites from the Terekta Complex as a constituent of ancient accretionary prism of Gorny Altai. Journal of Asian Earth Sciences 23 (5), 705-713. http://dx.doi.org/10.1016/S1367-9120(03)00127-5. 57. Volkova N.I., Stupakov S.I., Tret’yakov G.A., Simonov V.A., Travin A.V., Yudin D.S., 2005. Blueschists from the Uimon Zone as evidence for Ordovician accretionary-collisional events in Gorny Altai. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (4), 367-382. 58. Volkova N.I., Tarasova E.N., Polyanskii N.V., Vladimirov A.G., Khomyakov V.D., 2008. High-pressure rocks in the serpentinite mélange of the Chara Zone, Eastern Kazakhstan: geochemistry, petrology and age. Geochemistry International 46 (4), 422-437. http://dx.doi.org/10.1134/S0016702908040071. 59. Windley B.F., Alexeiev D., Xiao W.J., Kröner A., Badarch G., 2007. Tectonic models for accretion of the Central Asian orogenic belt. Journal of the Geological Society, London 164 (1), 31-47. http://dx.doi.org/10.1144/0016-76492006-022. 60. Windley B.F., Kröner A., Guo J., Qu G., Li Y., Zhang C., 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. The Journal of geology 110 (6), 719-737. 61. Zonenshain L.P., Kuz'min M.I., 1993. Paleogeodynamics. Nauka, Moscow. 192 p. 62. Zonenshain L.P., Kuz'min M.I., Natapov L.M., 1990. Plate Tectonics of the USSR Territory. Moscow, Nedra, Moscow. V. 1, 325 p.; V. 2, 334 p. 63. Zorin Y.A., Sklyarov E.V., Belichenko V.G., Mazukabzov A.M., 2009. Island arc-back-arc basin evolution: implications for Late Riphean-Early Paleozoic geodynamic history of the Sayan-Baikal folded area. Russian Geology and Geophysics 50 (3), 149-161. http://dx.doi.org/10.1016/j.rgg.2008.06.022. |