Инд. авторы: Zhukova E.S., Torgashev V.I., Gorshunov B.P., Lebedev V.V., Shakurov G.S., Kremer R.K., Pestrjakov E.V., Thomas V.G., Fursenko D.A., Prokhorov A.S., Dressel M.
Заглавие: Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice
Библ. ссылка: Zhukova E.S., Torgashev V.I., Gorshunov B.P., Lebedev V.V., Shakurov G.S., Kremer R.K., Pestrjakov E.V., Thomas V.G., Fursenko D.A., Prokhorov A.S., Dressel M. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice // Journal of Chemical Physics. - 2014. - Vol.140. - Iss. 22. - Art.224317. - ISSN 0021-9606. - EISSN 1089-7690.
Внешние системы: DOI: 10.1063/1.4882062; РИНЦ: 23831084;
Реферат: eng: Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be3Al2Si6O18, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ɛ′(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from several wavenumbers up to ν = 7000 cm−1, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ɛ′(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν 1, ν 2, and ν 3 of the H2O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm−1 reveal a rich set of highly anisotropic features in the low-energy response of H2O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm−1 and ∼160 cm−1, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm−1) and translational (150–200 cm−1) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential relief felt by a molecule within the cavity.
Ключевые слова: beryl crystal lattice; nano-cavity; Vibrational states; Vibrational states of a water molecule;
Издано: 2014
Физ. характеристика: 224317
Цитирование: 1. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999). http://dx.doi.org/10.1088/0034-4885/62/12/201 2. H. Dosch, Appl. Surf. Sci. 182, 192 (2001). http://dx.doi.org/10.1016/S0169-4332(01)00426-3 3. F. Franks, Water, A Matrix of Life, 2nd ed. (Royal Society of Chemistry, Cambridge, United Kingdom, 2000). 4. S. Solomon, Water: The Epic Struggle for Wealth, Power, and Civilization (Harper, New York, 2010). 5. M. Chaplin, “The water molecule, liquid water, hydrogen bonds and water networks,” in Water The Forgotten Biological Molecule, edited by D. Le Bihan and H. Fukuyama (Pan Stanford Publishing Pte. Ltd., Singapore, 2011). 6. F. H. Stillinger, Science 209, 451 (1980). http://dx.doi.org/10.1126/science.209.4455.451 7. L. Pauling, General Chemistry (Freeman, San Francisco, 1970), 3rd ed. (republished by Dover, New York, 1988). 8. F. Franks, Water: A Comprehensive Treatise (Plenum, New York, 1972), Vols. 1-7. 9. W. Kauzmann, The Structures and Properties of Water (Oxford, London, 1969). 10. T. Mizota, N. Satake, K. Fujiwara, and N. Nakayama in Proceedings of the 13th ICPWS, edited by P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Balakrishnan (NCR Research Press, Ottawa, 2000), p. 623. 11. G. Garberoglio, Eur. Phys. J. E 31, 73 (2010). http://dx.doi.org/10.1140/epje/i2010-10552-0 12. G. F. Reiter, A. I. Kolesnikov, S. J. Paddison, P. M. Platzman, A. P. Moravsky, M. A. Adams, and J. Mayers, Phys. Rev. B 85, 045403 (2012). http://dx.doi.org/10.1103/PhysRevB.85.045403 13. D. J. Mann and M. D. Halls, Phys. Rev. Lett. 90, 195503 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.195503 14. K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature (London) 412, 802 (2001). http://dx.doi.org/10.1038/35090532 15. A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.035503 16. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Science 312, 1034 (2006). http://dx.doi.org/10.1126/science.1126298 17. Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nat. Mater. 6, 135 (2007). http://dx.doi.org/10.1038/nmat1823 18. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London) 414, 188 (2001). http://dx.doi.org/10.1038/35102535 19. C. Dellago, M. M. Naor, and G. Hummer, Phys. Rev. Lett. 90, 105902 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.105902 20. C. Dellago and G. Hummer, Phys. Rev. Lett. 97, 245901 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.245901 21. K. Kurotobi and Y. Murata, Science 333, 613 (2011). http://dx.doi.org/10.1126/science.1206376 22. C. Beduz, M. Carravetta, J. Y.-C. Chen, M. Concistrè, M. Denning, M. Frunzi, A. J. Horsewill, O. G. Johannessen, R. Lawler, X. Lei, M. H. Levitt, Y. Li, S. Mamone, Y. Murata, U. Nagel, T. Nishida, J. Ollivier, S. Rols, T. Rõõm, R. Sarkar, N. J. Turro, and Y. Yang, Proc. Natl. Acad. Sci. U.S.A. 109, 12894 (2012). http://dx.doi.org/10.1073/pnas.1210790109 23. A. Nalaparaju, R. Babarao, X. S. Zhao, and J. W. Jiang, ACS Nano 3, 2563 (2009). http://dx.doi.org/10.1021/nn900605u 24. V. S. Gorelik and V. V. Filatov, Bull. Lebedev Phys. Inst. 39, 311 (2012). http://dx.doi.org/10.3103/S1068335612110024 25. N. Nandi and B. Bagchi, J. Phys. Chem. 100, 13914 (1996). http://dx.doi.org/10.1021/jp960134s 26. N. Nandi and B. Bagchi, J. Phys. Chem. B 101, 10954 (1997). http://dx.doi.org/10.1021/jp971879g 27. Protein-Solvent Interactions, edited by R. B. Gregory (Marcel Dekker Inc., New York, USA, 1995). 28. Water in Biology, Chemistry and Physics, edited by G. W. Robinson, S. B. Singh, and M. W. Evans (World Scientific, Singapore, 1996), Chap. 7. 29. M. M. Teeter, Annu. Rev. Biophys. Biophys. Chem. 20, 577 (1991). http://dx.doi.org/10.1146/annurev.bb.20.060191.003045 30. B. Hille, Ion Channels in Excitable Membranes (Sinauer Associates, Sunderland, 2001). 31. B. Bagchi, Chem. Rev. 105, 3197 (2005). http://dx.doi.org/10.1021/cr020661+ 32. F. Zhu and K. Schulten, Biophys. J. 85, 236 (2003). http://dx.doi.org/10.1016/S0006-3495(03)74469-5 33. K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, D. J. Tobias, G. Zaccai, and M. Weik, Proc. Natl. Acad. Sci. U.S.A. 104, 18049 (2007). http://dx.doi.org/10.1073/pnas.0706566104 34. G. G. Gibbs, D. W. Breck, and E. P. Meagher, Lithos 1, 275 (1968). http://dx.doi.org/10.1016/S0024-4937(68)80044-1 35. B. Morosin, Acta Crystallogr. B 28, 1899 (1972). http://dx.doi.org/10.1107/S0567740872005199 36. D. L. Wood and K. Nassau, Am. Mineral. 53, 777 (1968). 37. B. A. Kolesov and C. A. Geiger, Phys. Chem. Miner. 27, 557 (2000). http://dx.doi.org/10.1007/s002690000102 38. A. D. Buckingham, J. Mol. Struct. 250, 111 (1991). http://dx.doi.org/10.1016/0022-2860(91)85023-V 39. C. Aurisicchio, O. Grubessi, and P. Zetcchini, Can. Mineral. 32, 55 (1994). 40. M. Lodzinski, M. Sitarz, K. Stec, M. Kozanecki, Z. Fojud, and S. Jurga, J. Mol. Struct. 744-747, 1005 (2005). http://dx.doi.org/10.1016/j.molstruc.2004.12.042 41. P. de Donato, A. Cheilletz, O. Barres, and J. Yvon, Appl. Spectrosc. 58, 521 (2004). http://dx.doi.org/10.1366/000370204774103336 42. B. Charoy, P. de Donato, O. Barres, and C. Pinto-Coelho, Am. Mineral. 81, 395 (1996). 43. H. Hagemann, A. Lucken, H. Bill, J. Gysler-Sanz, and H. A. Stalder, Phys. Chem. Miner. 17, 395 (1990). http://dx.doi.org/10.1007/BF00212207 44. B. A. Kolesov, J. Struct. Chem. 47, 21 (2006). http://dx.doi.org/10.1007/s10947-006-0261-4 45. B. Kolesov, Phys. Chem. Miner. 35, 271 (2008). http://dx.doi.org/10.1007/s00269-008-0220-z 46. B. Kolesov, Am. Mineral. 91, 1355 (2006). http://dx.doi.org/10.2138/am.2006.2179 47. B. P. Gorshunov, E. S. Zhukova, V. I. Torgashev, V. V. Lebedev, G. S. Shakurov, R. K. Kremer, E. V. Pestrjakov, V. G. Thomas, D. A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013). http://dx.doi.org/10.1021/jz400782j 48. V. G. Thomas and V. A. Klyakhin, “The specific features of beryl doping by chromium under hydrothermal conditions,” in Mineral Forming in Endogenic Processes, edited by N. V. Sobolev (Nauka, Novosibirsk, 1987) pp. 60-67 (in Russian). 49. V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962). 50. G. Kozlov and A. Volkov, in Millimeter and Submillimeter Spectroscopy of Solids, edited by G. Grüner (Springer, Berlin, 1998). 51. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005). http://dx.doi.org/10.1007/s10762-005-7600-y 52. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, Cambridge, 1999). 53. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002). 54. A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964). http://dx.doi.org/10.1103/PhysRev.135.A1732 55. T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineral. 82, 1054 (1997). 56. C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995). http://dx.doi.org/10.1016/0921-4526(94)00290-C 57. F. Gervais, B. Piriou, and F. Cabannes, Phys. Status Solidi B 51, 701 (1972). http://dx.doi.org/10.1002/pssb.2220510230 58. See supplementary material at http://dx.doi.org/10.1063/1.4882062 for parameters and assignments of water-related modes observed in beryl for at T = 5 K and for detailed description of temperature behavior of water related resonances. 59. V. I. Gaiduk, B. M. Tseitlin, and Ch. M. Briskina, Dokl. Phys. 46, 540 (2001). http://dx.doi.org/10.1134/1.1401217 60. M. Sharma, R. Resta, and R. Car, Phys. Rev. Lett. 95, 187401 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.187401 61. L. M. Anovitz, E. Mamontov, P. ben Ishai, A. I. Kolesnikov, Phys. Rev. E 88, 052306 (2013). http://dx.doi.org/10.1103/PhysRevE.88.052306