Цитирование: | 1. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999). http://dx.doi.org/10.1088/0034-4885/62/12/201
2. H. Dosch, Appl. Surf. Sci. 182, 192 (2001). http://dx.doi.org/10.1016/S0169-4332(01)00426-3
3. F. Franks, Water, A Matrix of Life, 2nd ed. (Royal Society of Chemistry, Cambridge, United Kingdom, 2000).
4. S. Solomon, Water: The Epic Struggle for Wealth, Power, and Civilization (Harper, New York, 2010).
5. M. Chaplin, “The water molecule, liquid water, hydrogen bonds and water networks,” in Water The Forgotten Biological Molecule, edited by D. Le Bihan and H. Fukuyama (Pan Stanford Publishing Pte. Ltd., Singapore, 2011).
6. F. H. Stillinger, Science 209, 451 (1980). http://dx.doi.org/10.1126/science.209.4455.451
7. L. Pauling, General Chemistry (Freeman, San Francisco, 1970), 3rd ed. (republished by Dover, New York, 1988).
8. F. Franks, Water: A Comprehensive Treatise (Plenum, New York, 1972), Vols. 1-7.
9. W. Kauzmann, The Structures and Properties of Water (Oxford, London, 1969).
10. T. Mizota, N. Satake, K. Fujiwara, and N. Nakayama in Proceedings of the 13th ICPWS, edited by P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Balakrishnan (NCR Research Press, Ottawa, 2000), p. 623.
11. G. Garberoglio, Eur. Phys. J. E 31, 73 (2010). http://dx.doi.org/10.1140/epje/i2010-10552-0
12. G. F. Reiter, A. I. Kolesnikov, S. J. Paddison, P. M. Platzman, A. P. Moravsky, M. A. Adams, and J. Mayers, Phys. Rev. B 85, 045403 (2012). http://dx.doi.org/10.1103/PhysRevB.85.045403
13. D. J. Mann and M. D. Halls, Phys. Rev. Lett. 90, 195503 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.195503
14. K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature (London) 412, 802 (2001). http://dx.doi.org/10.1038/35090532
15. A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.035503
16. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Science 312, 1034 (2006). http://dx.doi.org/10.1126/science.1126298
17. Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nat. Mater. 6, 135 (2007). http://dx.doi.org/10.1038/nmat1823
18. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London) 414, 188 (2001). http://dx.doi.org/10.1038/35102535
19. C. Dellago, M. M. Naor, and G. Hummer, Phys. Rev. Lett. 90, 105902 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.105902
20. C. Dellago and G. Hummer, Phys. Rev. Lett. 97, 245901 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.245901
21. K. Kurotobi and Y. Murata, Science 333, 613 (2011). http://dx.doi.org/10.1126/science.1206376
22. C. Beduz, M. Carravetta, J. Y.-C. Chen, M. Concistrè, M. Denning, M. Frunzi, A. J. Horsewill, O. G. Johannessen, R. Lawler, X. Lei, M. H. Levitt, Y. Li, S. Mamone, Y. Murata, U. Nagel, T. Nishida, J. Ollivier, S. Rols, T. Rõõm, R. Sarkar, N. J. Turro, and Y. Yang, Proc. Natl. Acad. Sci. U.S.A. 109, 12894 (2012). http://dx.doi.org/10.1073/pnas.1210790109
23. A. Nalaparaju, R. Babarao, X. S. Zhao, and J. W. Jiang, ACS Nano 3, 2563 (2009). http://dx.doi.org/10.1021/nn900605u
24. V. S. Gorelik and V. V. Filatov, Bull. Lebedev Phys. Inst. 39, 311 (2012). http://dx.doi.org/10.3103/S1068335612110024
25. N. Nandi and B. Bagchi, J. Phys. Chem. 100, 13914 (1996). http://dx.doi.org/10.1021/jp960134s
26. N. Nandi and B. Bagchi, J. Phys. Chem. B 101, 10954 (1997). http://dx.doi.org/10.1021/jp971879g
27. Protein-Solvent Interactions, edited by R. B. Gregory (Marcel Dekker Inc., New York, USA, 1995).
28. Water in Biology, Chemistry and Physics, edited by G. W. Robinson, S. B. Singh, and M. W. Evans (World Scientific, Singapore, 1996), Chap. 7.
29. M. M. Teeter, Annu. Rev. Biophys. Biophys. Chem. 20, 577 (1991). http://dx.doi.org/10.1146/annurev.bb.20.060191.003045
30. B. Hille, Ion Channels in Excitable Membranes (Sinauer Associates, Sunderland, 2001).
31. B. Bagchi, Chem. Rev. 105, 3197 (2005). http://dx.doi.org/10.1021/cr020661+
32. F. Zhu and K. Schulten, Biophys. J. 85, 236 (2003). http://dx.doi.org/10.1016/S0006-3495(03)74469-5
33. K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, D. J. Tobias, G. Zaccai, and M. Weik, Proc. Natl. Acad. Sci. U.S.A. 104, 18049 (2007). http://dx.doi.org/10.1073/pnas.0706566104
34. G. G. Gibbs, D. W. Breck, and E. P. Meagher, Lithos 1, 275 (1968). http://dx.doi.org/10.1016/S0024-4937(68)80044-1
35. B. Morosin, Acta Crystallogr. B 28, 1899 (1972). http://dx.doi.org/10.1107/S0567740872005199
36. D. L. Wood and K. Nassau, Am. Mineral. 53, 777 (1968).
37. B. A. Kolesov and C. A. Geiger, Phys. Chem. Miner. 27, 557 (2000). http://dx.doi.org/10.1007/s002690000102
38. A. D. Buckingham, J. Mol. Struct. 250, 111 (1991). http://dx.doi.org/10.1016/0022-2860(91)85023-V
39. C. Aurisicchio, O. Grubessi, and P. Zetcchini, Can. Mineral. 32, 55 (1994).
40. M. Lodzinski, M. Sitarz, K. Stec, M. Kozanecki, Z. Fojud, and S. Jurga, J. Mol. Struct. 744-747, 1005 (2005). http://dx.doi.org/10.1016/j.molstruc.2004.12.042
41. P. de Donato, A. Cheilletz, O. Barres, and J. Yvon, Appl. Spectrosc. 58, 521 (2004). http://dx.doi.org/10.1366/000370204774103336
42. B. Charoy, P. de Donato, O. Barres, and C. Pinto-Coelho, Am. Mineral. 81, 395 (1996).
43. H. Hagemann, A. Lucken, H. Bill, J. Gysler-Sanz, and H. A. Stalder, Phys. Chem. Miner. 17, 395 (1990). http://dx.doi.org/10.1007/BF00212207
44. B. A. Kolesov, J. Struct. Chem. 47, 21 (2006). http://dx.doi.org/10.1007/s10947-006-0261-4
45. B. Kolesov, Phys. Chem. Miner. 35, 271 (2008). http://dx.doi.org/10.1007/s00269-008-0220-z
46. B. Kolesov, Am. Mineral. 91, 1355 (2006). http://dx.doi.org/10.2138/am.2006.2179
47. B. P. Gorshunov, E. S. Zhukova, V. I. Torgashev, V. V. Lebedev, G. S. Shakurov, R. K. Kremer, E. V. Pestrjakov, V. G. Thomas, D. A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013). http://dx.doi.org/10.1021/jz400782j
48. V. G. Thomas and V. A. Klyakhin, “The specific features of beryl doping by chromium under hydrothermal conditions,” in Mineral Forming in Endogenic Processes, edited by N. V. Sobolev (Nauka, Novosibirsk, 1987) pp. 60-67 (in Russian).
49. V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962).
50. G. Kozlov and A. Volkov, in Millimeter and Submillimeter Spectroscopy of Solids, edited by G. Grüner (Springer, Berlin, 1998).
51. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005). http://dx.doi.org/10.1007/s10762-005-7600-y
52. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, Cambridge, 1999).
53. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002).
54. A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964). http://dx.doi.org/10.1103/PhysRev.135.A1732
55. T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineral. 82, 1054 (1997).
56. C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995). http://dx.doi.org/10.1016/0921-4526(94)00290-C
57. F. Gervais, B. Piriou, and F. Cabannes, Phys. Status Solidi B 51, 701 (1972). http://dx.doi.org/10.1002/pssb.2220510230
58. See supplementary material at http://dx.doi.org/10.1063/1.4882062 for parameters and assignments of water-related modes observed in beryl for at T = 5 K and for detailed description of temperature behavior of water related resonances.
59. V. I. Gaiduk, B. M. Tseitlin, and Ch. M. Briskina, Dokl. Phys. 46, 540 (2001). http://dx.doi.org/10.1134/1.1401217
60. M. Sharma, R. Resta, and R. Car, Phys. Rev. Lett. 95, 187401 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.187401
61. L. M. Anovitz, E. Mamontov, P. ben Ishai, A. I. Kolesnikov, Phys. Rev. E 88, 052306 (2013). http://dx.doi.org/10.1103/PhysRevE.88.052306
|