Инд. авторы: Шацкий А.Ф., Литасов К.Д., Пальянов Ю.Н.
Заглавие: Фазовые взаимоотношения в карбонатных системах при p- t параметрах литосферной мантии: обзор экспериментальных данных
Библ. ссылка: Шацкий А.Ф., Литасов К.Д., Пальянов Ю.Н. Фазовые взаимоотношения в карбонатных системах при p- t параметрах литосферной мантии: обзор экспериментальных данных // Геология и геофизика. - 2015. - Т.56. - № 1-2. - С.149-187. - ISSN 0016-7886.
Внешние системы: РИНЦ: 23063212;
Реферат: rus: Приводится анализ экспериментальных данных по фазовым взаимоотношениям в карбонатных системах. В первом разделе рассмотрены P-T диаграммы состояния простых карбонатов: MgCO 3, CaCO 3, FeCO 3, BaCO 3, SrCO 3, K 2CO 3 и Na 2CO 3. Во втором разделе рассмотрены T-X диаграммы состояния бинарных и тройных систем: CaCO 3-MgCO 3, CaCO 3-FeCO 3, CaCO 3-FeCO 3-MgCO 3, BaCO 3-СаCO 3, SrCO 3-СаCO 3, BaCO 3-SrCO 3, CaCO 3-MgCO 3-BaCO 3, CaCO 3-MgCO 3-SrCO 3, BaCO 3-CaCO 3-SrCO 3, BaCO 3-MgCO 3-SrCO 3, Na 2CO 3-CaCO 3, K 2CO 3-CaCO 3, K 2CO 3-Na 2CO 3, Na 2CO 3-K 2CO 3-CaCO 3 и K 2CO 3-MgCO 3 при давлениях до 3.5 ГПа. В третьем разделе приведены T-X диаграммы состояния в системах MgCO 3-FeCO 3, MgCO 3-CaCO 3, CaCO 3-FeCO 3, MgCO 3-FeCO 3-CaCO 3, K 2CO 3-MgCO 3, Na 2CO 3-MgCO 3, K 2CO 3-FeCO 3, Na 2CO 3-FeCO 3, K 2CO 3-CaCO 3, Na 2CO 3-CaCO 3, K 2CO 3-FeCO 3-MgCO 3, Na 2CO 3-FeCO 3-MgCO 3, K 2CO 3-CaCO 3-MgCO 3 и Na 2CO 3-CaCO 3-MgCO 3 при 6 ГПа. В заключительной главе обсуждаются температуры образования и особенности состава карбонатных расплавов в верхней мантии и перспективы дальнейших исследований фазовых взаимоотношений в карбонатных системах при высоких давлениях и температурах.
eng: The paper presents a synopsis of experimentally constrained phase relations in carbonate systems. Three sections of the paper consider, respectively, PT diagrams of simple carbonates (MgCO 3, CaCO 3, FeCO 3, BaCO 3, SrCO 3, K 2CO 3, and Na 2CO 3); isobaric T-X diagrams of binary and ternary systems (CaCO 3-MgCO 3, CaCO3-FeCO 3, CaCO 3-FeCO 3-MgCO 3, BaCO 3-CaCO 3, SrCO 3-CaCO 3, BaCO 3-SrCO 3, CaCO 3-MgCO 3-BaCO 3, CaCO 3-MgCO 3-SrCO 3, BaCO 3-CaCO 3-SrCO 3, BaCO 3-MgCO 3-SrCO 3, Na 2CO 3-CaCO 3, and K 2CO 3-CaCO 3), and T-X diagrams of the systems MgCO 3-FeCO 3, MgCO 3-CaCO 3, CaCO 3-FeCO 3, MgCO 3-FeCO 3-CaCO 3, K 2CO 3-MgCO 3, Na 2CO 3-MgCO 3, K 2CO 3-FeCO 3, Na 2CO 3-FeCO 3, K 2CO 3-CaCO 3, Na 2CO 3-CaCO 3, K 2CO 3-FeCO 3-MgCO 3, Na 2CO 3-FeCO 3-MgCO 3, K 2CO 3-CaCO 3-MgCO 3, and Na 2CO 3-CaCO 3-MgCO 3 at 6 GPa. The last section deals with temperatures of carbonate magma generation in the upper mantle and with melt compositions. In conclusion, prospects are outlined for further research of phase relations in carbonate system at high pressures and temperatures.
Ключевые слова: Carbonatite; partial melting; high-pressure high-temperature experiments; карбонат; carbonate; carbonated mantle; эксперименты при высоких давлениях и температурах; частичное плавление карбонатизированной мантии; карбонатит;
Издано: 2015
Физ. характеристика: с.149-187
Цитирование: 1. Борздов Ю.М., Сокол А.Г., Пальянов Ю.Н., Калинин А.А., Соболев Н.В. Исследование кристаллизации алмаза в щелочных силикатных, карбонатных и карбонат-силикатных расплавах // ДАН, 1999, т. 374, с. 91-93. 2. Буланова Г.П., Павлова Л.П. Ассоциация магнезиального перидотита в алмазе из трубки «Мир» // Докл. АН СССР, 1987, т. 295, с. 1452-1456. 3. Головин А.В., Шарыгин В.В., Похиленко Н.П., Мальковец В.Г., Колесов Б.А., Соболев Н.В. Вторичные включения расплава в оливине неизмененных кимберлитов трубки Удачная-Восточная, Якутия // ДАН, 2003, т. 388, с. 369-372. 4. Головин А.В., Шарыгин В.В., Похиленко Н.П. Расплавные включения во вкрапленниках оливина из неизмененных кимберлитов трубки Удачная-Восточная (Якутия): некоторые аспекты эволюции кимберлитовых магм на поздних стадиях кристаллизации // Петрология, 2007, т. 15, с. 1-17. 5. Добрецов Н.Л., Шацкий А.Ф. Глубинный цикл углерода и глубинная геодинамика: роль ядра и карбонатитовых расплавов в нижней мантии // Геология и геофизика, 2012, т. 53 (11), с. 1455-1475. 6. Дорошев А.М., Логвинов В.М. Фазовые превращения Be2SiO4 и BaCO3 при высоких давлениях // Экспериментальные исследования в связи с проблемой верхней мантии. Новосибирск, ИГиГ АН СССР, 1982, с. 5-29. 7. Зедгенизов Д.А., Рагозин А.Л., Шацкий В.С. Хлоридно-карбонатный флюид в алмазах из ксенолита эклогита // ДАН, 2007, т. 415, с. 800-803. 8. Зедгенизов Д.А., Рагозин А.Л., Шацкий В.С., Араухо Д., Гриффин В.Л. Карбонатные и силикатные среды кристаллизации волокнистых алмазов из россыпей северо-востока Сибирской платформы // Геология и геофизика, 2011, т. 52 (11), с. 1649-1664. 9. Когарко Л.Н., Рябчиков И.Д., Кузьмин Д.В. Высокобариевая слюда в оливинитах Гулинского массива (Маймеча-Котуйская провинция, Сибирь) // Геология и геофизика, 2012, т. 53 ( ), с. 1572-1579. 10. Литасов К.Д., Шарыгин И.С., Шацкий А.Ф., Отани Э., Похиленко Н.П. Роль хлоридов в образовании и эволюции кимберлитовой магмы по данным экспериментальных исследований // ДАН, 2010, т. 435, с. 667-672. 11. Литвин Ю.А., Жариков В.А. Экспериментальное моделирование генезиса алмаза: кристаллизация алмаза в многокомпонентных карбонат-силикатных расплавах при 5-7 ГПа и 1200-1570 °С // ДАН, 2000, т. 372, с. 808-811. 12. Литвин Ю.А., Чудиновских Л.Т., Жариков В.А. Кристаллизация алмаза и графита в мантийных щелочно-карбонатных расплавах в эксперименте при 7-11 ГПа // ДАН, 1997, т. 355, с. 669-672. 13. Логвинов В.М., Дорошев А.М. Фазовые превращения в карбонатах Mg, Ca, Sr и Ba при давлениях до 160 кбар // Силикатные системы при высоких давлениях. Новосибирск, ИГиГ СО АН СССР, 1983, с. 47-56. 14. Логвинова А.М., Вирт Р., Томиленко А.А., Афанасьев В.П., Соболев Н.В. Особенности фазового состава наноразмерных кристаллофлюидных включений в аллювиальных алмазах северо-востока Сибирской платформы // Геология и геофизика, 2011, т. 52 (11), с. 1634-1648. 15. Пальянов Ю.Н., Сокол А.Г., Борздов Ю.М., Соболев Н.В. Экспериментальное исследование процессов кристаллизации алмаза в системах карбонат-углерод в связи с проблемой генезиса алмаза в магматических и метаморфических породах // Геология и геофизика, 1998a, т. 39 (12), с. 1780-1792. 16. Пальянов Ю.Н., Сокол А.Г., Борздов Ю.М., Хохряков А.Ф., Соболев Н.В. Кристаллизация алмаза в системах CaCO3-C, MgCO3-C и CaMg(CO3)2-C // ДАН, 1998б, т. 363, с. 1156-1159. 17. Пальянов Ю.Н., Сокол А.Г., Соболев Н.В. Экcпеpиментальное моделиpование мантийныx алмазообpазующиx пpоцеccов // Геология и геофизика, 2005, т. 46 (12), с. 1290-1303. 18. Похиленко Н.Л., Алифирова Т.А., Юдин Д.С. 40Ar/39Ar-датирование флогопита из мантийных ксенолитов: свидетельства древнего глубинного метасоматоза литосферы Сибирского кратона // ДАН, 2013, т. 449, с. 76-79. 19. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск, Наука, 1974, 264 с. 20. Соболев Н.В., Бакуменко И.Т., Ефимова Э.С., Похиленко Н.П. Особенности морфологии микроалмазов, содержания примесей натрия в гранатах и калия в пироксенах двух ксенолитов эклогитов из кимберлитовой трубки «Удачная» (Якутия) // Докл. АН СССР, 1991, т. 321, № 3, с. 585-592. 21. Соболев Н.В., Логвинова А.М., Ефимова Э.С. Сингенетические включения флогопита в алмазах кимберлитов: свидетельство роли летучих в образовании алмазов // Геология и геофизика, 2009, т. 50 (12), с. 1588-1606. 22. Соколова Т.С., Дорогокупец П.И., Литасов К.Д. Взаимосогласованные шкалы давлений на основании уравнений состояния рубина, алмаза, MgO, B2-NaCl, а также Au, Pt и других металлов до 4 Мбар и 3000 K // Геология и геофизика, 2013, т. 54(2), с. 237-261. 23. Спивак А.В., Дубровинский Л.С., Литвин Ю.А. Конгруэнтное плавление Са-карбоната в статическом эксперименте при 3500 K и 10-22 ГПа: значение для генезиса сверхглубинных алмазов // ДАН, 2011, т. 439, с. 803-806. 24. Шарыгин И.С., Литасов К.Д., Шацкий А.Ф., Головин А.В., Отани Е., Похиленко Н.П. Экспериментальное исследование плавления кимберлита трубки Удачная-Восточная при 3-6.5 ГПа и 900-1500 °С // ДАН, 2013, т. 448, с. 452-457. 25. Шацкий А.Ф., Борздов Ю.М., Сокол А.Г., Пальянов Ю.Н. Особенности фазообразования и кристаллизации алмаза в ультракалиевых карбонат-силикатных системах с углеродом // Геология и геофизика, 2002, т. 43 (10), с. 940-950. 26. Шацкий В.С., Рагозин А.Л., Соболев Н.В. Некоторые аспекты метаморфической эволюции ультравысокобарических известково-силикатных пород Кокчетавского массива // Геология и геофизика, 2006, т. 47 (1), с. 105-118. 27. Akaishi M., Kanda H., Yamaoka S. Synthesis of diamond from graphite-carbonate systems under very high temperature and pressure // J. Crystal Growth, 1990, v. 104, p. 578-581. 28. Al-Shemali M., Boldyrev A.I. Search for ionic orthocarbonates: Ab initio study of Na4CO4 // J. Phys. Chem., 2002, A 106, p. 8951-8954. 29. Alt J.C., Teagle A.H. The uptake of carbon during alteration of ocean crust // Geochim. Cosmochim. Acta, 1999, v. 63, p. 1527-1535. 30. Antao S.M., Hassan I. BaCO3: high-temperature crystal structures and the Pmcn → R3m phase transition at 811 °C // Phys. Chem. Miner., 2007, v. 34, p. 573-580. 31. Arceo H.B., Glasser F.P. Fluxing reactions of sulfates and carbonates in cement clinkering II. The system CaCO3-K2CO3 // Cement Concrete Res., 1995, v. 25, p. 339-344. 32. Bagdassarov N., Slutskii A. Phase transformations in calcite from electrical impedance measurements // Phase Transitions, 2003, v. 76, p. 1015-1028. 33. Baker E.H. A high-temperature form of strontium carbonate // J. Chem. Soc., 1962, v. 484, p. 2525-2526. 34. Bataleva Y.V., Palyanov Y.N., Sokol A.G., Borzdov Y.M., Palyanova G.A. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation // Lithos, 2012, v. 128, p. 113-125. 35. Becht H.Y., Struikmans R. A monoclinic high-temperature modification of potassium carbonate // Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1976, v. 32, p. 3344-3346. 36. Bell K., Simonetti A. Source of parental melts to carbonatites-critical isotopic constraints // Miner. Petrol., 2010, v. 98, p. 77-89. 37. Bindi L., Safonov O.G., Yapaskurt V.O., Perchuk L.L., Menchetti S. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: occurrence, composition and crystal-chemical characterization // Amer. Miner. 2003, v. 88(2-3), p. 464-468. 38. Boulard E., Gloter A., Corgne A., Antonangeli D., Auzende A.L., Perrillat J.P., Guyot F., Fiquet G. New host for carbon in the deep Earth // Proceedings of the National Academy of Sciences of the United States of America, 2011, v. 108, p. 5184-5187. 39. Boulard E., Menguy N., Auzende A.L., Benzerara K., Bureau H., Antonangeli D., Corgne A., Morard G., Siebert J., Perrillat J.P., Guyot F., Fiquet G. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle // J. Geophys. Res., Solid Earth, 2012, v. 117, B02208. 40. Brey G., Brice W.R., Ellis D.J., Green D.H., Harris K.L., Ryabchikov I.D. Pyroxene-carbonate reactions in the upper mantle // Earth Planet. Sci. Lett., 1983, v. 62, p. 63-74. 41. Brey G.P., Bulatov V.K., Girnis A.V., Lahaye Y. Experimental melting of carbonated peridotite at 6-10 GPa // J. Petrol., 2008, v. 49, p. 797-821. 42. Brey G.P., Bulatov V.K., Girnis A.V. Melting of K-rich carbonated peridotite at 6-10 GPa and the stability of K-phases in the upper mantle // Chem. Geol., 2011, v. 281, p. 333-342. 43. Brice W.R., Chang J.M. Subsolidus phase relations in aragonite-type carbonates. III. The system MgCO3-CaCO3-BaCO3, MgCO3-CaCO3-SrCO3, and MgCO3-SrCO3-BaCO3 // Amer. Miner., 1973, v. 58, p. 979-985. 44. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism // Contr. Miner. Petrol., 2010, v. 160, p. 489-510. 45. Bundy F.P., Bassett W.A., Weathers M.S., Hemley R.J., Mao H.U., Goncharov A.F. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 // Carbon 34, 1996, p. 141-153. 46. Buob A. The system CaCO3-MgCO3: Experiments and thermodynamic solid solutions at high pressure and temperature. Swiss Federal Institute of Technology, Zürich, 2003, 109 p. 47. Buob A., Luth R.W., Schmidt M.W., Ulmer P. Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature // Amer. Miner., 2006, v. 91, p. 435-440. 48. Byrnes A.P., Wyllie P.J. Subsolidus and melting relations for the join CaCO3-MgCO3 at 10 kbar // Geochim. Cosmochim. Acta, 1981, v. 45, p. 321-328. 49. Cancarevic Z., Schon J.C., Jansen M. Alkali metal carbonates at high pressure // Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, v. 632, p. 1437-1448. 50. Cancarevic Z.P., Schon J.C., Jansen M. Possible existence of alkali metal orthocarbonates at high pressure // Chem. Europ. J., 2007, v. 13, p. 7330-7348. 51. Chang L.L.Y. Subsolidus phase relations in the systems BaCO3-SrCO3, SrCO3-CaCO3, and BaCO3-CaCO3 // J. Geol., 1965, v. 73, p. 346-368. 52. Chang L.L.Y. Subsolidus phase relations in the aragonite-type carbonates: I. The system CaCO3-SrCO3-BaCO3 // Amer. Miner., 1971, v. 56, p. 1660-1673. 53. Cooper A.F., Gittins J., Tuttle O.F. The system Na2CO3-K2CO3-CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis // Amer. J. Sci., 1975, v. 275, p. 534-560. 54. Dalton J.A., Presnall D.C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa // Contr. Miner. Petrol., 1998a, v. 131, p. 123-135. 55. Dalton J.A., Presnall D.C. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa // J. Petrol., 1998b, v. 39, p. 1953-1964. 56. Dasgupta R., Hirschmann M.M. Melting in the Earth’s deep upper mantle caused by carbon dioxide // Nature, 2006, v. 440, p. 659-662. 57. Dasgupta R., Hirschmann M.M. Effect of variable carbonate concentration on the solidus of mantle peridotite // Amer. Miner., 2007, v. 92, p. 370-379. 58. Dasgupta R., Hirschmann M.M., Withers A.C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions // Earth Planet. Sci. Lett., 2004, v. 227, p. 73-85. 59. Davidson P.M., Symmes G.H., Cohen B.A., Reeder R.J., Lindsley D.H. Synthesis of the new compound CaFe(CO3)2 and experimental constraints on the (Ca,Fe)CO3 join // Geochim. Cosmochim. Acta, 1994, v. 58, p. 5105-5109. 60. De Villiers J.P.R. Crystal structures of aragonite, strontianite, and witherite // Amer. Miner., 1971, v. 56, p. 758-767. 61. Depater C.J. Disordered structure of Na2CO3 at 400 °C // Physica B & C, 1979, v. 96, p. 89-95. 62. Dinnebier R.E., Vensky S., Jansen M., Hanson J.C. Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali-metal oxalates M-2[C2O4] (M = K, Rb, Cs) // Chem. Europ. J., 2005, v. 11, p. 1119-1129. 63. Dobretsov N.L., Shatsky V.S. Exhumation of high-pressure rocks of the Kokchetav massif: facts and models // Lithos, 2004, v. 78, p. 307-318. 64. Dobrzhinetskaya L.F., Eide E.A., Larsen R.B., Sturt B.A., Trønnes R.G., Smith D.C., Taylor W.R., Posukhova T.V. Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway // Geology, 1995, v. 23, p. 597-600. 65. Dobrzhinetskaya L.F., Wirth R., Green H.W. Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: A new constraint for the depth of metamorphic diamond crystallization // Earth Planet. Sci. Lett., 2006, v. 243, p. 85-93. 66. Doucelance R., Hammouda T., Moreira M., Martins J.C. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case // Geochim. Cosmochim. Acta, 2010, v. 74, p. 7261-7282. 67. Dusek M., Chapuis G., Meyer M., Petricek V. Sodium carbonate revisited // Acta Crystallographica Section B-Structural Science, 2003, v. 59, p. 337-352. 68. Eitel W., Skaliks W. Some double carbonates of alkali and earth alkali. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1929, v. 183, p. 263-286. 69. Farfan G., Wang S., Ma H., Caracas R., Mao W.L. Bonding and structural changes in siderite at high pressure // Amer. Miner., 2012, v. 97, p. 1421-1426. 70. Faul U.H. Melt retention and segregation beneath mid-ocean ridges // Nature, 2001, v. 410, p. 920-923. 71. Fiquet G., Guyot F., Itie J.P. High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3 // Amer. Miner., 1994, v. 79, p. 15-23. 72. Fiquet G., Guyot F., Kunz M., Matas J., Andrault D., Hanfland M. Structural refinements of magnesite at very high pressure // Amer. Miner., 2002, v. 87, p. 1261-1265. 73. Franzolin E., Schmidt M.W., Poli S. Ternary Ca-Fe-Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder // Contr. Miner. Petrol., 2011, v. 161, p. 213-227. 74. Franzolin E., Merlini M., Poli S., Schmidt M.W. The temperature and compositional dependence of disordering in Fe-bearing dolomites // Amer. Miner., 2012, v. 97, p. 1676-1684. 75. Froese E. A note on strontium magnesium carbonate // Canad. Miner., 1967, v. 9, p. 65-70. 76. Ghosh S., Ohtani E., Litasov K.D., Terasaki H. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle // Chem. Geol., 2009, v. 262, p. 17-28. 77. Goldsmith J.R., Heard H.C. Subsolidus phase relations in the system CaCO3-MgCO3 // J. Geol., 1961, v. 69, p. 45-74. 78. Goldsmith J.R., Graf D.L., Witters J., Northrop D.A. Studies in the system CaCO3-MgCO3-FeCO3. 1. Phase relations. 2. A method for major-element spectrochemical analysis. 3. Compositions of some Ferroan dolomites // J. Geol., 1962, v. 70, p. 659-688. 79. Golovin A.V., Sharygin I.S., Korsakov A.V., Pokhilenko N.P. Can parental kimberlite melts be alkali-carbonate liquids: Results of investigation of composition melt inclusions in the mantle xenoliths from kimberlites // 10th International Kimberlite Conference, Bangalore, India, 2012, p. 10IKC-91. 80. Graf D.L., Goldsmith J.R. Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures // Geochim. Cosmochim. Acta, 1955, v. 7, p. 109-128. 81. Grassi D., Schmidt M.W. The melting of carbonated pelites from 70 to 700 km depth // J. Petrol., 2011, v. 52, p. 765-789. 82. Green D.H., Wallace M.E. Mantle metasomatism by ephemeral carbonatite melts // Nature, 1988, v. 336, p. 459-462. 83. Gurney J.J., Helmstaedt H.H., Richardson S.H., Shirey S.B. Diamonds through time // Econ. Geol., 2010, v. 105, p. 689-712. 84. Haggerty S.E. Diamond genesis in a multiply-constrained model // Nature, 1986, v. 320, p. 34-38. 85. Haggerty S.E. Mantle metasomes and the kinship between carbonatites and kimberlites / Ed. K. Bell // Carbonatites: genesis and evolution. London, Unwin Hyman Ltd, 1989, p. 546-560. 86. Hammouda T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle // Earth Planet. Sci. Lett., 2003, v. 214, p. 357-368. 87. Hammouda T., Andrault D., Koga K., Katsura T., Martin A. Ordering in double carbonates and implications for processes at subduction zones // Contr. Miner. Petrol., 2011, v. 161, p. 439-450. 88. Harker R.I., Tuttle O.F. Studies in the system CaO-MgO-CO2: Part 2. Limits of solid solution along the binary join, CaCO3-MgCO3 // Amer. J. Sci., 1955, v. 253, p. 274-282. 89. Harlow G.E. K in clinopyroxene at high pressure and temperature: An experimental study // Amer. Miner., 1997, v. 82, p. 259-269. 90. Harlow G.E., Veblen D.R. Potassium in clinopyroxene inclusions from diamonds // Science, 1991, v. 251, p. 652-655. 91. Harmer R.E., Gittins J. The case for primary, mantle-derived carbonatite magma // J. Petrol., 1998, v. 39, p. 1895-1903. 92. Harmer R.E., Lee C.A., Eglington B.M. A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe // Earth Planet. Sci. Lett., 1998, v. 158, p. 131-142. 93. Harris M.J., Salje E.K.H. The incommensurate phase of sodium carbonate: an infrared absorption study // J. Phys.-Conden. Matter, 1992, v. 4, p. 4399-4408. 94. Harris M.J., Dove M.T. Lattice melting at structural phase transitions // Modern Phys. Lett., 1995, B 9, p. 67-85. 95. Hauri E.H., Shimizu N., Dieu J.J., Hart S.R. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle // Nature, 1993, v. 365, p. 221-227. 96. Hayden L.A., Watson E.B. Grain boundary mobility of carbon in Earth’s mantle: A possible carbon flux from the core // Proceedings of the National Academy of Sciences of the United States of America, 2008, v. 105, p. 8537-8541. 97. Hesse K.-F., Simons B. Crystal structure of synthetic K2Mg(CO3)2 // Zeitschrift fur Kristallographie, 1982, v. 161, p. 289-292. 98. Holl C.M., Smyth J.R., Laustsen H.M.S., Jacobsen S.D., Downs R.T. Compression of witherite to 8 GPa and the crystal structure of BaCO3II // Phys. Chem. Miner., 2000, v. 27, p. 467-473. 99. Huang W.L., Wyllie P.J. Melting relationships in the systems CaO-CO2 and MgO-CO2 to 33 kilobars // Geochim. Cosmochim. Acta, 1976, v. 40, p. 129-132. 100. Irving A.J., Wyllie P.J. Melting relationships in CaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle // Earth Planet. Sci. Lett., 1973, v. 20, p. 220-225. 101. Irving A.J., Wyllie P.J. Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kb // Geochim. Cosmochim. Acta, 1975, v. 39, p. 35-53. 102. Ishizawa N., Setoguchi H., Yanagisawa K. Structural evolution of calcite at high temperatures: Phase V unveiled. Scientific Reports, 2013, v. 3, 2832 p. 103. Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T., Nishibori E., Takata M., Sakata M. Stability of magnesite and its high-pressure form in the lowermost mantle // Nature, 2003, v. 427, p. 60-63. 104. Ito K., Kennedy G.C. Melting and phase relations in a natural peridotite to 40 kilobars // Amer. J. Sci., 1967, v. 265, p. 519-538. 105. Jarrard R.D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium // Geochem. Geophys. Geosyst., 2003, v. 4, №5, p. 8905, doi:10. 1029/2002 GC000392. 106. Javoy M. The major volatile elements of the Earth: Their origin, behavior, and fate // Geophys. Res. Lett., 1997, v. 24, p. 177-180. 107. Kamenetsky M.B., Sobolev A.V., Kamenetsky V.S., Maas R., Danyushevsky L.V., Thomas R., Pokhilenko N.P., Sobolev N.V. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle // Geology, 2004, v. 32, p. 845-848. 108. Kamenetsky V.S., Kamenetsky M.B., Weiss Y., Navon O., Nielsen T.F.D., Mernagh T.P. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland // Lithos, 2009, v. 112, p. 334-346. 109. Kamenetsky V.S., Grütter H., Kamenetsky M.B., Gömann K. Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate // Chem. Geol., 2013, v. 353, p. 96-111. 110. Kaminsky F., Wirth R., Matsyuk S., Schreiber A., Thomas R. Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas // Miner. Mag., 2009, v. 73, p. 797-816. 111. Kaminsky F.V., Wirth R., Schreiber A. Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association // The Canad. Miner., 2013, v. 51, p. 669-688. 112. Kanda H., Akaishi M., Yamaoka S. Morphology of synthetic diamonds grown from Na2CO3 solvent-catalyst // J. Crystal Growth, 1990, v. 106, p. 471-475. 113. Kanzaki M., Xue X.Y., Stebbins J.F. Phase relations in Na2O-SiO2 and K2Si4O9 systems up to 14 GPa and Si-29 NMR study of the new high-pressure phases: implications to the structure of high-pressure silicate glasses // Phys. Earth Planet. Inter., 1998, v. 107, p. 9-21. 114. Katsura T., Ito E. Melting and subsolidus relations in the MgSiO3-MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere // Earth Planet. Sci. Lett., 1990, v. 99, p. 110-117. 115. Kennedy C.S., Kennedy G.C. The equilibrium boundary between graphite and diamond // J. Geophys. Res., 1976, v. 81, p. 2467-2470. 116. Keppler H. Water solubility in carbonatite melts // Amer. Miner., 2003, v. 88, p. 1822-1824. 117. Kerrick D.M., Connolly J.A.D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle // Nature, 2001a, v. 411, p. 293-296. 118. Kerrick D.M., Connolly J.A.D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling // Earth Planet. Sci. Lett., 2001b, v. 189, p. 19-29. 119. Klein-BenDavid O., Wirth R., Navon O. TEM imaging and analysis of microinclusions in diamonds: A close look at diamond-growing fluids // Amer. Miner., 2006, v. 91, p. 353-365. 120. Klein-BenDavid O., Izraeli E.S., Hauri E., Navon O. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids // Geochim. Cosmochim. Acta, 2007, v. 71, p. 723-744. 121. Klein-BenDavid O., Logvinova A.M., Schrauder M., Spetius Z.V., Weiss Y., Hauri E.H., Kaminsky F.V., Sobolev N.V., Navon O. High-Mg carbonatitic microinclusions in some Yakutian diamonds - a new type of diamond-forming fluid // Lithos, 2009, v. 112, p. 648-659. 122. Klement W., Cohen L.H. Solid-solid and solid-liquid transitions in K2CO3, Na2CO3 and Li2CO3: Investigations to ≥ 5 kbar by differential thermal analysis; thermodynamics and structural correlations // Berichte der Bunsengesellschaft für physikalische Chemie, 1975, v. 79, p. 327-334. 123. Korsakov A.V., Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks // Earth Planet. Sci. Lett., 2006, v. 241, p. 104-118. 124. Korsakov A.V., De Gussem K., Zhukov V.P., Perraki M., Vandenabeele P., Golovin A.V. Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, northern Kazakhstan // European J. Miner., 2009a, v. 21, p. 1301-1311. 125. Korsakov A.V., Golovin A.V., De Gussem K., Sharygin I.S., Vandenabeele P. First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009b, v. 73, p. 424-427. 126. Kröger C., Illner K.W., Graeser W. Über die Systeme Alkalioxyd CaO-Al2O3-SiO2-CO2. XI. Die Reaktionsdrucke im System K2O-CaO-SiO2-CO2 // Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1943, B. 251, S. 270-284. 127. Lander J.J. Polymorphism and anion rotational disorder in the alkaline earth carbonates // J. Chem. Phys., 1949, v. 17, p. 892-901. 128. Lavina B., Dera P., Downs R.T., Prakapenka V., Rivers M., Sutton S., Nicol M. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition // Geophys. Res. Lett., 2009, v. 36, L23306. 129. Lavina B., Dera P., Downs R.T., Yang W.G., Sinogeikin S., Meng Y., Shen G.Y., Schiferl D. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition // Phys. Rev., 2010, B 82, 064110. 130. Leost I., Stachel T., Brey G.P., Harris J.W., Ryabchikov I.D. Diamond formation and source carbonation: mineral associations in diamonds from Namibia // Contr. Miner. Petrol., 2003, v. 145, 15-24. 131. Liebske C. Mantle melting at high pressure experimental constraints on magma ocean differentiation, Von der Fakultät für Biologie, Chemie und Geowissenschaften. Universität Bayreuth, Bayreuth, 2005, 220 p. 132. Lin C.-C., Liu L.-g. High pressure phase transformations in aragonite-type carbonates. Phys. Chem. Miner., 1997, v. 24, p. 149-157. 133. Litasov K.D., Fei Y.W., Ohtani E., Kuribayashi T., Funakoshi K. Thermal equation of state of magnesite to 32 GPa and 2073 K // Phys. Earth Planet. Inter., 2008, v. 168, p. 191-203. 134. Litasov K.D., Safonov O.G., Ohtani E. Origin of Cl-bearing silica-rich melt inclusions in diamonds:Experimental evidence for an eclogite connection // Geology, 2010, v. 38(12), p. 1131-1134. 135. Litasov K.D., Shatskiy A., Gavryushkin P.N., Sharygin I.S., Dorogokupets P.I., Dymshits A.M., Ohtani E., Higo Y., Funakoshi K. P-V-T equation of state of siderite to 33 GPa and 1673 K // Phys. Earth Planet. Inter., 2013a, v. 224, p. 83-87. 136. Litasov K.D., Shatskiy A., Ohtani E., Yaxley G.M. The solidus of alkaline carbonatite in the deep mantle // Geology, 2013b, v. 41, p. 79-82. 137. Litvin Y.A., Chudinovskikh L.T., Saparin G.V., Obyden S.K., Chukichev M.V., Vavilov V.S. Diamonds of new alkaline carbonate-graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies // Diamond Related Materials, 1999, v. 8, p. 267-272. 138. Liu Q., Tenner T.J., Lange R.A. Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa // Contr. Miner. Petrol., 2006, v. 153, p. 55-66. 139. Logvinova A.M., Wirth R., Fedorova E.N., Sobolev N.V. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation // European J. Miner., 2008, v. 20, p. 317-331. 140. Luth R.W. Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa // Amer. Miner., 1997, v. 82, p. 1198-1209. 141. Maciel A., Ryan J.F. Observation of coupled amplitude modes in the Raman spectrum of incommensurate Na2CO3 // J. Phys. C-Solid State Physics, 1981, v. 14, p. L509-L514. 142. Matsuzaki T., Hagiya K., Shatskiy A., Katsura T., Matsui M. Crystal structure of anhydrous phase X, K1.93(Mg2.02Cr0.02)Si2.00O7 // J. Miner. Petrol. Sci., 2010, v. 105, p. 303-308. 143. Mattila A., Pylkkänen T., Rueff J., Huotari S., Vanko G., Hanfland M., Lehtinen M., Hämäläinen K. Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy // J. Physics: Condensed Matter, 2007, v. 19, 386206. 144. McDade P., Harris J.W. Syngenetic inclusion bearing diamonds from the Letseng-la-Terai, Lesotho / Eds. J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.H. Richardson // The VIIth International Kimberlite Conference. Red Roof Design, Capetown, 1999, p. 557-565. 145. McDonough W.F. Compositional model for the Earth’s core / Eds. H.D. Holland, K.K. Turekian // Treatise on geochemistry. Oxford, Elsevier - Pergamon, 2003, p. 547-568. 146. McKie D. Subsolidus phase relations in the system K2Ca(CO3)2-Na2Mg(CO3)2 at 1 kbar: The fairchilditess-buetschliite-eitelite eutectoid // Amer. Miner., 1990, v. 75, p. 1147-1150. 147. Mellot-Draznieks C., Girard S., Ferey G., Schon J.C., Cancarevic Z., Jansen M. Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts // Chem. Europ. J., 2002, v. 8, p. 4103-4113. 148. Menzies M., Chazot G. Fluid processes in diamond to spinel facies shallow mantle // J. Geodyn., 1995, v. 20, p. 387-415. 149. Merlini M., Crichton W.A., Hanfland M., Gemmi M., Muller H., Kupenko I., Dubrovinsky L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle // Proceedings of the National Academy of Sciences of the United States of America, 2012a, v. 109, p. 13509-13514. 150. Merlini M., Hanfland M., Crichton W.A. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth’s mantle // Earth Planet. Sci. Lett., 2012b, p. 265-271. 151. Meyer H.O.A. Genesis of diamond: a mantle saga // Amer. Miner., 1985, v. 70, p. 344-355. 152. Mikhno A.O., Korsakov A.V. K2O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calc-silicate system // Gond. Res., 2013, v. 23, p. 920-930. 153. Mirwald P.W. A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure // Contr. Miner. Petrol., 1976, v. 59, p. 33-40. 154. Mitchell R.H., Kjarsgaard B.A. Experimental studies of the system Na2CO3-CaCO3-MgF2 at 155. 0-1 GPa: Implications for the differentiation and low-temperature crystallization of natrocarbonatite // J. Petrol., 2011, v. 52, p. 1265-1280. 156. Morlidge M., Pawley A., Droop G. Double carbonate breakdown reactions at high pressures: an experimental study in the system CaO-MgO-FeO-MnO-CO2 // Contr. Miner. Petrol., 2006, v. 152, p. 365-373. 157. Murakami T., Wallis S., Enami M., Kagi H. Forearc diamond from Japan // Geology, 2008, v. 36, p. 219-222. 158. Nagai T., Ishido T., Seto Y., Nishio-Hamane D., Sata N., Fujino K. Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements // J. Physics: Conference Series, 2010, v. 215, p. 012002. 159. Navon O. High internal pressure in diamond fluid inclusions determined by infrared absorption // Nature, 1991, v. 353, p. 746-748. 160. Niggli P. Gleichgewichte zwischen TiO2 und CO2, sowie SiO2 und CO2 in Alkali-, Kalk-Alkali und Alkali-Aluminatschmelzen. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1916, B. 98, S. 241-326. 161. Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle // Earth Planet. Sci. Lett., 2008, v. 273, p. 38-47. 162. Okay A.I. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China // Europ. J. Miner., 1993, v. 5, p. 659-675. 163. Ono S. High-pressure phase transformation in MnCO3: a synchrotron XRD study // Miner. Mag., 2007a, v. 71, p. 105-111. 164. Ono S. New high-pressure phases in BaCO3 // Phys. Chem. Miner., 2007b, v. 34, p. 215-221. 165. Ono S., Kikegawa T., Ohishi Y., Tsuchiya J. Post-aragonite phase transformation in CaCO3 at 40 GPa // Amer. Miner., 2005a, v. 90, p. 667-671. 166. Ono S., Shirasaka M., Kikegawa T., Ohishi Y. A new high-pressure phase of strontium carbonate // Phys. Chem. Miner., 2005b, v. 32, p. 8-12. 167. Ono S., Kikegawa T., Ohishi Y. High-pressure transition of CaCO3 // Amer. Miner., 2007, v. 92, p. 1246-1249. 168. Pal’yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F., Shatsky A.F., Sobolev N.V. The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P = 7 GPa and T = 1700-1750 °C // Diamond Relat. Mater., 1999a, v. 8, p. 1118-1124. 169. Pal’yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F., Sobolev N.V. Diamond formation from mantle carbonate fluids // Nature, 1999b, v. 400, p. 417-418. 170. Pal’yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F., Sobolev N.V. Diamond formation through carbonate-silicate interaction // Amer. Miner., 2002, v. 87, p. 1009-1013. 171. Palyanov Y.N., Shatsky V.S., Sobolev N.V., Sokol A.G. The role of mantle ultrapotassic fluids in diamond formation // Proceedings of the National Academy of Sciences of the United States of America, 2007, v. 104, p. 9122-9127. 172. Palyanov Y.N., Bataleva Y.V., Sokol A.G., Borzdov Y.M., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. Mantle-slab interaction and redox mechanism of diamond formation // Proceedings of the National Academy of Sciences, 2013, v. 110, p. 20408-20413. 173. Palme H., O’Naill H.S.C. Cosmochemical estimates of mantle composition / Eds. A.M. Davis, H.D. Holland, K.K. Turekian // Treatise on geochemistry. Oxford, Elsevier-Pergamon, 2003, v. 2, p. 1-38. 174. Perchuk L.L., Safonov O.G., Yapaskurt V.O., Barton Jr, J.M. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review // Lithos, 2002, v. 60, p. 89-111. 175. Perraki M., Proyer A., Mposkos E., Kaindi R., Hoinkes G. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece // Earth Planet. Sci. Lett., 2006, v. 31, p. 672-685. 176. Phillips D., Harris J.W., Viljoen K.S. Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa // Lithos, 2004, v. 77, p. 155-179. 177. Ragone S.E., Datta R.K., Roy D.M., Tuttle O.F. The system potassium carbonate-magnesium carbonate // J. Phys. Chem., 1966, v. 70, p. 3360-3361. 178. Rapoport E., Pistorius C.W.F.T. Orthorhombic-disordered rhombohedral transition in SrCO3 and BaCO3 to 40 kilobars // J. Geoph. Res., 1967, v. 72, p. 6353-6357. 179. Redfern S., Salje E., Navrotsky A. High-temperature enthalpy at the orientational order-disorder transition in calcite: implications for the calcite/aragonite phase equilibrium // Contr. Miner. Petrol., 1989, v. 101, p. 479-484. 180. Reisman A. Heterogeneous equilibria in the system K2CO3-Na2CO3 // J. Amer. Chem. Soc., 1959, v. 81, p. 807-811. 181. Ringwood A., Reid A., Wadsley A. High-pressure KAlSi3O8, an aluminosilicate with sixfold coordination // Acta Crystallogr., 1967, v. 23, p. 1093-1095. 182. Rosenberg P.E. Subsolidus relations in the system CaCO3-FeCO3 // Amer. J. Sci., 1963, v. 261, p. 683-689. 183. Rosenberg P.E. Subsolidus relations in the system CaCO3-MgCO3-FeCO3 between 350° and 550 °C // Amer. Miner., 1967, v. 52, p. 787-796. 184. Safonov O.G., Kamenetsky V.S., Perchuk L.L. Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems: experiments and application to natural assemblages // J. Petrol., 2011, v. 52(7-8), p. 1307-1331. 185. Santillán J., Williams Q. A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite // Phys. Earth Planet. Inter., 2004a, v. 143-144, p. 291-304. 186. Santillán J., Williams Q. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3 // Amer. Miner., 2004b, v. 89, p. 1348-1352. 187. Santillán J., Williams Q., Knittle E. Dolomite-II: A high-pressure polymorph of CaMg(CO3)2 // Geophys. Res. Lett., 2003, v. 30, p. 1054. 188. Santillan J., Catalli K., Williams Q. An infrared study of carbon-oxygen bonding in magnesite to 60 GPa // Amer. Miner., 2005, v. 90, p. 1669-1673. 189. Sato K., Katsura T., Ito E. Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism // Earth Planet. Sci. Lett., 1997, v. 146, p. 511-526. 190. Schertl H.-P., Sobolev N. The Kokchetav Massif, Kazakhstan: «Type locality» of diamond-bearing UHP metamorphic rocks // J. Asian Earth Sci., 2013, v. 63, p. 5-38. 191. Schneide S.J., Levin E.M. Polymorphism of K2CO3 // J. Amer. Ceramic Soc., 1973, v. 56, p. 218-219. 192. Schrauder M., Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana // Geochim. Cosmochim. Acta, 1994, v. 58, p. 761-771. 193. Searle M., Hacker B.R., Bilham R. The Hindu Kush seismic zone as a paradigm for the creation of ultrahig-pressure diamond and coesite-bearing continental rocks // J. Geol., 2001, v. 109, p. 143-153. 194. Sharygin I.S., Golovin A.V., Pokhilenko N.P. Melt pockets in sheared garnet lherzolite xenoliths from the Udachnaya-East kimberlite pipe (Yakutia, Russia). 9th International Kimberlite Conference, Frankfurt, Germany, 2008, Extended Abstract No. 9IKC-A-00213. 195. Sharygin I.S., Golovin A.V., Korsakov A.V., Pokhilenko N.P. Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia) - a new locality and host rock type // European J. Miner., 2013, v. 25, p. 825-834. 196. Sharygin I., Litasov K., Shatskiy A., Golovin A., Ohtani E., Pokhilenko N. Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0-6.5 GPA: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes // Gondwana Res., 2015, doi:10.1016/j.gr.2014.10.005. 197. Shatskiy A., Litasov K.D., Matsuzaki T., Shinoda K., Yamazaki D., Yoneda A., Ito E., Katsura T. Single crystal growth of wadsleyite // Amer. Miner., 2009a, v. 94, p. 1130-1136. 198. Shatskiy A., Yamazaki D., Morard G., Cooray T., Matsuzaki T., Higo Y., Funakoshi K., Sumiya H., Ito E., Katsura T. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments // Rev. Sci. Instrum., 2009b, v. 80, p. 023907. 199. Shatskiy A., Gavryushkin P.N., Sharygin I.S., Litasov K.D., Kupriyanov I.N., Higo Y., Borzdov Y.M., Funakoshi K., Palyanov Y.N., Ohtani E. Melting and subsolidus phase relations in the system Na2CO3-MgCO3+-H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle // Amer. Miner., 2013a, v. 98, p. 2172-2182. 200. Shatskiy A., Litasov K.D., Borzdov Y.M., Katsura T., Yamazaki D., Ohtani E. Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: Implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle // Phys. Earth Planet. Inter., 2013b, v. 225, p. 1-11. 201. Shatskiy A., Sharygin I.S., Gavryushkin P.N., Litasov K.D., Borzdov Y.M., Shcherbakova A.V., Higo Y., Funakoshi K., Palyanov Y.N., Ohtani E. The system K2CO3-MgCO3 at 6 GPa and 900-1450 °C // Amer. Miner., 2013c, v. 98, p. 1593-1603. 202. Shatskiy A., Sharygin I.S., Litasov K.D., Borzdov Y.M., Palyanov Y.N., Ohtani E. New experimental data on phase relations for the system Na2CO3-CaCO3 at 6 GPa and 900-1400 °C // Amer. Miner., 2013d, v. 98, p. 2164-2171. 203. Shatskiy A., Borzdov Y.M., Litasov K.D., Kupriyanov I.N., Ohtani E., Palyanov Y.N. Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900-1700 °С and its relation to the system CaCO3-FeCO3-MgCO3 // Amer. Miner., 2014, v. 99, p. 773-785. 204. Shatskiy A., Borzdov Y.M., Litasov K.D., Sharygin I.S., Palyanov Y.N., Ohtani E. Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900-1450 °C // Amer. Miner., 2015а, v. 100, p. 223-232. 205. Shatskiy A., Gavryushkin P.N., Litasov K.D., Koroleva O.N., Kupriyanov I.N., Borzdov Y.M., Sharygin I.S., Funakoshi K., Palyanov Y.N., Ohtani E. Raman spectroscopic and X-ray diffraction studies of the Na-Ca carbonates synthesized under upper mantle conditions // European J. Miner., 2015b, doi:10.1127/ejm/2015/0027-2426. 206. Shatskiy A., Ohtani E., Litasov K.D., Borzdov Y.M., Palyanov Y.N. The system Na2CO3-FeCO3 at 6 GPa and its relation to the system Na2CO3-FeCO3-MgCO3 // Amer. Miner., 2015c, v. 100, p. 130-137. 207. Shatsky V.S., Sobolev N.V., Vavilov M.A. Diamond-bearing metamorphic rocks from the Kokchetav massif (Northern Kazakhstan) / Eds. R.G. Coleman, X. Wang // Ultrahigh pressure metamorphism. Cambridge University Press, 1995, p. 427-455. 208. Shatsky V., Ragozin A., Zedgenizov D., Mityukhin S. Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe // Lithos, 2008, v. 105, p. 289-300. 209. Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds // Gondwana Res., 2014, DOI: http://dx.doi.org/10.1016/j.gr.2014.03.018. 210. Shcheka S.S., Wiedenbeck M., Frost D.J., Keppler H. Carbon solubility in mantle minerals // Earth Planet. Sci. Lett., 2006, v. 245, p. 730-742. 211. Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Diamonds and the geology of mantle carbon // Rev. Miner. Geochem., 2013, p. 355-421. 212. Sobolev N.V. Deep seated inclusions in kimberlites and the problem of the composition of the upper mantle. AGU, Washington, D.C. 1977. 213. Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature, 1990, v. 343, p. 742-746. 214. Sobolev N.V., Kaminsky F.V., Griffin W.L., Yefimova E.S., Win T.T., Ryan C.G., Botkunov A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia // Lithos, 1997, v. 39, p. 135-157. 215. Sobolev N.V., Schertl H.-P., Neuser R.D., Shatsky V.S. Relict unusually low iron pyrope-grossular garnets in UHPM calc-silicate rocks of the Kokchetav Massif, Kazakhstan // Int. Geol. Rev., 2007, v. 49, p. 717-731. 216. Sokol A.G., Pal’yanov Y.N., Pal’yanova G.A., Khokhryakov A.F., Borzdov Y.M. Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions // Diamond Relat. Mater., 2001, v. 10, p. 2131-2136. 217. Sokol A.G., Palyanov Y.N., Kupriyanov I.N., Litasov K.D., Polovinka M.P. Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems // Geochim. Cosmochim. Acta, 2010, v. 74, p. 4793-4806. 218. Spivak A.V., Litvin Y.A., Ovsyannikov S.V., Dubrovinskaia N.A., Dubrovinsky L.S. Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43 GPa and 3900 K // J. Solid State Chem., 2012, v. 191, p. 102-106. 219. Stachel T., Harris J.W., Brey G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania // Contr. Miner. Petrol., 1998, v. 132, p. 34-47. 220. Stachel T., Harris J.W., Brey G.P., Joswig W. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses // Contrib. Miner. Petrol., 2000, v. 140, p. 16-27. 221. Suito K., Namba J., Horikawa T., Taniguchi Y., Sakurai N., Kobayashi M., Onodera A., Shimomura O., Kikegawa T. Phase relations of CaCO3 at high pressure and high temperature // Amer. Miner., 2001, v. 86, p. 997-1002. 222. Sumiya H., Irifune T. Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds // SEI Technical Review, 2008, v. 66, p. 85-92. 223. Swainson I.P., Dove M.T., Harris M.J. Neutron powder diffraction study of the ferroelastic phase transition and lattice melting in sodium carbonate, Na2CO3 // J. Physics-Condensed Matter, 1995, v. 7, p. 4395-4417. 224. Taniguchi T., Dobson D., Jones A.P., Rabe R., Milledge H.J. Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9-10 GPa region // J. Mat. Res., 1996, v. 11, p. 2622-2632. 225. Tao R., Fei Y., Zhang L. Experimental determination of siderite stability at high pressure // Amer. Miner., 2013, v. 98, p. 1565-1572. 226. Taylor L.A., Keller R.A., Snyder G.A., Wang W.Y., Carlson W.D., Hauri E.H., McCandless T., Kim K.R., Sobolev N.V., Bezborodov S.M. Diamonds and their mineral inclusions, and what they tell us: A detailed «pull-apart» of a diamondiferous eclogite // Int. Geol. Rev., 2000, v. 42, p. 959-983. 227. Tomlinson E.L., Jones A.P., Harris J.W. Co-existing fluid and silicate inclusions in mantle diamond // Earth Planet. Sci. Lett., 2006, v. 250, p. 581-595. 228. Townsend J.P., Chang Y.-Y., Lou X., Merino M., Kirklin S.J., Doak J.W., Issa A., Wolverton C., Tkachev S.N., Dera P. Stability and equation of state of post-aragonite BaCO3 // Phys. Chem. Miner., 2013, v. 40, p. 447-453. 229. Trønnes R.G., Frost D.J. Peridotite melting and mineral-melt partitioning of major and minor elements at 22-24.5 GPa // Earth Planet. Sci. Lett., 2002, v. 197, p. 117-131. 230. Ulmer P., Sweeney R.J. Generation and differentiation of group II kimberlites: Constraints from a high-pressure experimental study to 10 GPa // Geochim. Cosmochim. Acta, 2002, v. 66, p. 2139-2153. 231. Urakawa S., Kondo T., Igawa N., Shimomura O., Ohno H. Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8 // Phys. Chem. Miner., 1994, v. 21, p. 387-391. 232. Wang A., Pasteris J.D., Meyer H.O.A., DeleDuboi M.L. Magnesite-bearing inclusion assemblage in natural diamond // Earth Planet. Sci. Lett., 1996, v. 141, p. 293-306. 233. Weidner J.R. Equilibria in the system Fe-C-O; Part I. Siderite-magnetite-carbon-vapor equilibrium from 500 to 10,000 bars // Amer. J. Sci., 1972, v. 272, p. 735-751. 234. Weidner J.R. Iron-oxide magmas in the system Fe-C-O // Canad. Miner., 1982, v. 20, p. 555-566. 235. Weiss Y., Kessel R., Griffin W.L., Kiflawi I., Klein-BenDavid O., Bell D.R., Harris J.W., Navon O. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea // Lithos, 2009, v. 112, p. 660-674. 236. Wirth R., Kaminsky F., Matsyuk S., Schreiber A. Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil // Earth Planet. Sci. Lett., 2009, v. 286, p. 292-303. 237. Xu S., Okay A.I., Shouyuan J., Sengor A.M.C., Wen S., Yican L., Laili J. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting // Science, 1992, New Series 256, p. 80-82. 238. Yasuda A., Fujii T., Kurita K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle // J. Geophys. Res.: Solid Earth (1978-2012), 1994, v. 99, p. 9401-9414. 239. Yaxley G.M., Brey G.P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites // Contr. Miner. Petrol., 2004, v. 146, p. 606-619. 240. Yaxley G.M., Crawford A.J., Green D.H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia // Earth Planet. Sci. Lett., 1991, v. 107, p. 305-317. 241. Zedgenizov D.A., Ragozin A.L., Shatsky V.S., Araujo D., Griffin W.L., Kagi H. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia) // Lithos, 2009, v. 112, p. 638-647. 242. Zedgenizov D.A., Kagi H., Shatsky V.S., Ragozin A.L. Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle // Chem. Geol., 2014, v. 363, p. 114-124. 243. Zerr A., Diegeler A., Boehler R. Solidus of Earth’s deep mantle // Science, 1998, v. 281, p. 243-246.