Инд. авторы: | Зедгенизов Д.А., Шацкий В.С., Панин А.В., Евтушенко О.В., Рагозин А.Л., Каги Х. |
Заглавие: | Свидетельства фазовых переходов минеральных включений в сверхглубинных алмазах из месторождения сао-луис ( бразилия) |
Библ. ссылка: | Зедгенизов Д.А., Шацкий В.С., Панин А.В., Евтушенко О.В., Рагозин А.Л., Каги Х. Свидетельства фазовых переходов минеральных включений в сверхглубинных алмазах из месторождения сао-луис ( бразилия) // Геология и геофизика. - 2015. - Т.56. - № 1-2. - С.384-396. - ISSN 0016-7886. |
Внешние системы: | РИНЦ: 23063227; |
Реферат: | eng: Evidence for phase transitions in mineral inclusions in superdeep diamonds of alluvial placers in the São Luiz River deposits (Brazil) is obtained by the electron backscatter diffraction technique. It has been shown that the crystal structure of superdeep diamonds is significantly deformed around inclusions of MgSi-, CaSi-, and CaTiSi-perovskites, SiO2 (stishovite?), and Mg2SiO4 (ringwoodite?). On the contrary, significant deformations around inclusions of olivine, ferropericlase, and majoritic garnet are not detected. The absence of deformation near these minerals reveals the lack of phase transitions with dramatic volume changes. The present study suggests that the formation of superdeep diamonds proceeds at different levels of the sublithospheric mantle, transition zone, and lower mantle. rus: Методом дифракции обратнорассеянных электронов получены свидетельства фазовых переходов минеральных включений в сверхглубинных алмазах из аллювиальных россыпей бассейна р. Сао-Луис (Бразилия). Показано, что вблизи включений MgSi-, CaSi- и CaTiSi-перовскитов, SiO 2 (стишовита?) и Mg 2SiO 4 (рингвудита?) кристаллическая структура сверхглубинных алмазов сильно искажена. В то же время значительных пластических деформаций алмаза вокруг включений оливинов, ферропериклазов и майджоритовых гранатов не выявлено. Отсутствие пластических деформаций вокруг включений этих минералов указывает на то, что каких-либо фазовых превращений с увеличением объема не происходит. Предполагается, что сверхглубинные алмазы могут образовываться на разных уровнях сублитосферной верхней мантии, переходной зоны и нижней мантии. |
Ключевые слова: | переходная зона; верхняя мантия; сверхглубинные минералы; деформация; алмаз; lower mantle; transition zone; upper mantle; superdeep minerals; deformation; diamond; inclusions; включения; нижняя мантия; |
Издано: | 2015 |
Физ. характеристика: | с.384-396 |
Цитирование: | 1. Зедгенизов Д.А., Ефимова Э.С., Логвинова А.М., Шацкий В.С., Соболев Н.В. Включения ферропериклаза в микроалмазе из кимберлитовой трубки Удачная, Якутия // ДАН, 2001, т. 377, № 3, с. 381-384. 2. Литвин Ю.А. Стишовитовый парадокс в генезисе сверхглубинного алмаза // ДАН, 2014, т. 455, № 1, с. 76-81. 3. Нечаев Д.В., Хохряков А.Ф. Образование эпигенетических включений графита в кристаллах алмаза: экспериментальные данные // Геология и геофизика, 2013, т. 54 (4), с. 523-532. 4. Рагозин А.Л., Каримова А.А., Литасов К.Д., Зедгенизов Д.А., Шацкий В.С. Содержание воды в минералах мантийных ксенолитов из кимберлитов трубки Удачная (Якутия) // Геология и геофизика, 2014, т. 55 (4), с. 549-567. 5. Рябчиков И.Д., Каминский Ф.В. Кислородный потенциал процессов нижнемантийного алмазообразования // Геология рудных месторождений, 2013, т. 55, № 1, с. 3-15. 6. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск, Наука, 1974, 264 с. 7. Соболев Н.В., Ефимова Э.С., Реймерс Л.Ф., Захарченко О.Д., Махин А.Н., Усова Л.В. Минеральные включения в алмазах Архангельской кимберлитовой провинции // Геология и геофизика, 1997, т. 38 (2), с. 358-370. 8. Шацкий В.С., Зедгенизов Д.А., Рагозин А.Л. Мэйджоритовые гранаты в алмазах из россыпей северо-востока Сибирской платформы // ДАН, 2010, т. 432, № 6, с. 811-814. 9. Adams B.L., Wright S.I., Kunze K. Orientation imaging: the emergence of a new microscopy // Metall. Tran. A, 1993, v. 24, p. 819-831. 10. Akaogi M., Yano M., Tejima T., Iijima M., Kojitani H. High pressure transitions of diopside and wollastonite: Phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system // Phys. Earth Planet. Inter., 2004, v. 143-144, p. 145-156. 11. Armstrong L.S., Walter M.J., Tuff J.R., Lord O.T., Lennie A.R., Kleppe A.K., Clark S.M. Perovskite phase relations in the system CaO-MgO-TiO2-SiO2 and implications for deep mantle lithologies // J. Petrol., 2012, v. 53, p. 611-635. 12. Boyd F.R., Finnerty A.A. Conditions of origin of natural diamonds of peridotite affinity // J. Geophys. Res.: Solid Earth, 1980, v. 85, p. 6911-6918. 13. Brenker F.E., Vincze L., Vekemans B., Nasdala L., Stachel T., Vollmer C., Kersten M., Somogyi A., Adams F., Joswig W., Harris J.W. Detection of a Ca-rich lithology in the Earth’s deep (> 300 km) convecting mantle // Earth Planet. Sci. Lett., 2005, v. 236, p. 579-587. 14. Brenker F.E., Vollmer C., Vincze L., Vekemans B., Szymanski A., Janssens K., Szaloki I., Nasdala L., Joswig W., Kaminsky F. Carbonates from the lower part of transition zone or even the lower mantle // Earth Planet. Sci. Lett., 2007, v. 260, p. 1-9. 15. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism // Contr. Miner. Petrol., 2010, v. 160, p. 489-510. 16. Cayzer N.J., Odake S., Harte B., Kagi H. Plastic deformation of lower mantle diamonds by inclusion phase transformations // Eur. J. Miner., 2008, v. 20, p. 333-339. 17. Chudinovskikh L., Boehler R. High-pressure polymorphs of olivine and the 660-km seismic discontinuity // Nature, 2001, v. 411, p. 574-577. 18. Davies R.M., Griffin W.L., O’Reilly S.Y. Diamonds from the deep: pipe DO27, Slave craton, Canada // Proceedings of the VIIth International Kimberlite сonference. Cape Town, Red Roof Design, 1999, p. 148-155. 19. Dawson J.B., Smith J.V. Occurrence of diamond in a mica-garnet Iherzolite xenolith from kimberlite // Nature, 1975, v. 254, p. 580-581. 20. Deines P., Harris J.W., Gurney J.J. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa // Geochim. Cosmochim. Acta, 1991, v. 55, p. 2615-2625. 21. Gasparik T., Wolf K., Smith C.M. Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa // Amer. Miner., 1994, v. 79, p. 1219-1222. 22. Harris J. Diamond geology // The properties of natural and synthetic diamond, Oxford, Academ. Press, 1992, p. 345-393. 23. Harris J., Hutchison M.T., Hursthouse M., Light M., Harte B. A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds // Nature, 1997, v. 387, p. 486-488. 24. Harte B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones // Miner. Mag., 2010, v. 74, p. 189-215. 25. Harte B., Cayzer N. Decompression and unmixing of crystals included in diamonds from the mantle transition zone // Phys. Chem. Miner., 2007, v. 34, p. 647-656. 26. Harte B., Fitzsimons I.C.W., Harris J.W., Otter M.L. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S-Africa // Miner. Mag., 1999a, v. 63, p. 829. 27. Harte B., Harris J., Hutchison M., Watt G., Wilding M. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil // Mantle petrology: Field observations and high-pressure experimentation: A tribute to Francis R.(Joe) Boyd, 1999b, v. 6, p. 125-153. 28. Hayman P.C., Kopylova M.G., Kaminsky F.V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil) // Contr. Miner. Petrol., 2005, v. 149, p. 430-445. 29. Huang W.L., Wyllie P.J. Melting and subsolidus phase relationships for CaSiO3 to 35 kilobars pressure // Amer. Miner., 1975, v. 60, p. 213-217. 30. Humphreys F. Review grain and subgrain characterisation by electron backscatter diffraction // J. Materials Sci., 2001, v. 36, p. 3833-3854. 31. Hutchison M., Cartigny P., Harris J. Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil // Proceedings of the VIIth International Kimberlite conference. Cape Town, Red Roof Design, 1999, p. 372-382. 32. Hutchison M., Hursthouse M., Light M. Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity // Contr. Miner. Petrol., 2001, v. 142, p. 119-126. 33. Irifune T., Koizumi T., Ando J.I. An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12 // Phys. Earth Planet. Inter., 1996, v. 96, p. 147-157. 34. Joswig W., Stachel T., Harris J.W., Baur W.H., Brey G.P. New Ca-silicate inclusions in diamonds - tracers from the lower mantle // Earth Planet. Sci. Lett., 1999, v. 173, p. 1-6. 35. Kaminsky F.V. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond // Earth Sci. Rev., 2012, v. 110, № 1-4, p. 127-147. 36. Kaminsky F.V., Zakharchenko O.D., Davies R., Griffin W.L., Khachatryan-Blinova G.K., Shiryaev A. A. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil // Contr. Miner. Petrol., 2001, v. 140, p. 734-753. 37. Kaminsky F.V., Sablukov S.M., Belousova E.A., Andreazza P., Tremblay M., Griffin W.L. Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil // Lithos, 2010, v. 114, p. 16-29. 38. Kesson S.E., Fitz Gerald J.D. Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowüstite: implications for the origin of inclusions in diamond and the composition of the lower mantle // Earth Planet. Sci. Lett., 1992, v. 111, p. 229-240. 39. Kesson S.E., Fitz Gerald J.D., Shelley J.M.G., Withers R.L. Phase relations, structure and crystal-chemistry of some aluminous silicate perovskites // Earth Planet. Sci. Lett., 1995, v. 134, p. 187-201. 40. Litasov K.D., Kagi H., Shatskiy A., Ohtani E., Lakshtanov D.L., Bass J.D., Ito E. High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle // Earth Planet. Sci. Lett., 2007, v. 262, p. 620-634. 41. McCammon C. Perovskite as a possible sink for ferric iron in the lower mantle // Nature, 1997, v. 387, p. 694-696. 42. McCammon C.A., Stachel T., Harris J.W. Iron oxidation state in lower mantle mineral assemblages - II. Inclusions in diamonds from Kankan, Guinea // Earth Planet. Sci. Lett., 2004, v. 222, p. 423-434. 43. McDade P., Harris J. Syngenetic inclusion bearing diamonds from Letseng-la-Terai, Lesotho // Proceedings of the VIIth International Kimberlite conference, Cape Town, Red Roof Design, 1999, p. 557-565. 44. Meyer H. Inclusions in diamond // Mantle Xenoliths, 1987, v. 1, p. 501-522. 45. Moore R.O., Gurney J.J. Pyroxene solid-solution in garnets included in diamond // Nature, 1985, v. 318, p. 553-555. 46. Moore R., Gurney J. Mineral inclusions in diamond from the Monastery kimberlite, South Africa // Kimberlites and Related Rocks, 1989, v. 2, p. 1029-1041. 47. Moore R.O., Gurney J.J., Griffin W.L., Shimizu N. Ultra-high pressure garnet inclusions in Monastery diamonds; trace element abundance patterns and conditions of origin // Eur. J. Miner., 1991, v. 3, p. 213-230. 48. Ohtani E., Kagawa N., Fukino K. Stability of majorire (Mg,Fe)SiO3 at high pressures and 1800 °C // Earth Planet. Sci. Lett., 1991, v. 102, p. 158-166. 49. Pearson D.G., Brenker F.E., Nestola F., McNeill J., Nasdala L., Hutchison M.T., Matveev S., Mather K., Silversmit G., Schmitz S., Vekemans B., Vincze L. Hydrous mantle transition zone indicated by ringwoodite included within diamond // Nature, 2014, v. 507, p. 221-224. 50. Pokhilenko N.P., Sobolev N.V., Reutsky V.N., Hall A.E., Taylor L.A. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle // Lithos, 2004, v. 77, p. 57-67. 51. Ringwood A.E. Chemical evolution of the terrestrial planets // Geochim. Cosmochim. Acta, 1966, v. 30, p. 41-104. 52. Ringwood A.E., Irifune T. Nature of the 650-km seismic discontinuity - implications for mantle dynamics and differentiation // Nature, 1988, v. 331, p. 131-136. 53. Rudnick R.L., McDonough W.F., O’Connell R.J. Thermal structure, thickness and composition of continental lithosphere // Chem. Geol., 1998, v. 145, p. 395-411. 54. Scott-Smith B.H., Danchin R.V., Harris J.W., Stracke K.J. Kimberlites near Orroroo, South Australia // Kimberlites I: Kimberlites and related rocks / Ed. J. Kornprobst. Amsterdam, Elsevier, 1984, p. 121-142. 55. Shirey S., Cartigny P., Frost D., Keshav S., Nestola F., Pearson G., Sobolev N., Walter M.J. Diamonds and the geology of mantle carbon // Carbon in Earth: Reviews in Mineralogy & Geochemistry, Miner. Soc. Amer., 2013, v. 75, p. 355-421. 56. Sobolev N.V., Logvinova A.M., Zedgenizov D.A., Seryotkin Y.V., Yefimova E., Floss C., Taylor L. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study // Lithos, 2004, v. 77, p. 225-242. 57. Sobolev N., Logvinova A., Zedgenizov D., Pokhilenko N., Malygina E., Kuzmin D., Sobolev A. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia // Lithos, 2009, v. 112, p. 701-713. 58. Stachel T., Harris J. The origin of cratonic diamonds-constraints from mineral inclusions // Ore Geol. Rev., 2008, v. 34, p. 5-32. 59. Stachel T., Harris J.W., Brey G.P., Joswig W. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses // Contr. Miner. Petrol., 2000, v. 140, p. 16-27. 60. Stachel T., Harris J.W., Aulbach S., Deines P. Kankan diamonds (Guinea) III: delta C-13 and nitrogen characteristics of deep diamonds // Contr. Miner. Petrol., 2002, v. 142, p. 465-475. 61. Stachel T., Brey G.P., Harris J.W. Inclusions in sublithospheric diamonds: glimpses of deep Earth // Elements, 2005, v. 1, p. 73-78. 62. Walter M.J., Bulanova G.P., Armstrong L.S., Keshav S., Blundy J.D., Gudfinnsson G., Lord O.T., Lennie A.R., Clark S.M., Smith C.B., Gobbo L. Primary carbonatite melt from deeply subducted oceanic crust // Nature, 2008, v. 454, p. 622-630. 63. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions // Science, 2011, v. 334, p. 54-57. 64. Wilding M.C., Harte B., Harris J.W. Evidence for a deep origin for the Sao Luiz diamonds // Proceedings of the V th International Kimberlite conference, Araxa, 1991, p. 456-458. 65. Zedgenizov D., Kagi H., Shatsky V., Ragozin A. Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle // Chem. Geol., 2014a, v. 363, p. 114-124. 66. Zedgenizov D.A., Shatskiy A., Ragozin A.L., Kagi H., Shatsky V.S. Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment // Amer. Miner., 2014b, v. 99, p. 547-550. |