Инд. авторы: Perepechko Y., Sorokin K., Imomnazarov K.
Заглавие: Modeling of the nonlinear motion of saturated granular media
Библ. ссылка: Perepechko Y., Sorokin K., Imomnazarov K. Modeling of the nonlinear motion of saturated granular media // Bulletin of the Novosibirsk Computing Center. Series: Numerical Modeling in Atmosphere, Ocean, and Environment Studies. - 2015. - Vol.15. - P.51-65. - ISSN 1680-6999.
Внешние системы: РИНЦ: 25620473;
Реферат: eng: A nonlinear model of the saturated granular media based on a two- phase mixture model of viscous liquids is proposed. A mathematical model of the two-velocity dynamics of a granular medium involves the temperature phase equilibrium and the absence of the pressure phase equilibrium and is consistent from the thermodynamic standpoint. The obtained two-velocity model was veri ed by comparison with the results of numerical calculations for the one-velocity model. The convective and the pressure ows of the mixture of compressible viscous liquids for various conditions are simulated.
Издано: 2015
Физ. характеристика: с.51-65
Цитирование: 1. Landau L.D., Lifshitz E.M. Course of Theoretical Physics, Fluid Mechanics.{{ Pergamon Press, 1987. 2. Blohin A.M., Dorovsky V.N. Mathematical Modelling in the Theory of Multi- velocity Continuum.{{ Nova Science Publishing Incorporation, 1995. 3. Dorovsky V.N. Mathematical models of two-velocity media // Mathematical and Computer Modelling. {{ 1995. {{ Vol. 21, No. 7. {{ P. 17{28. 4. Dorovsky V.N., Perepechko Yu.V. Mathematical models of two-velocity media. Part II // Mathematical and Computer Modelling.{{ 1996.{{Vol. 24, No. 10.{{ P. 69{80. 5. Dorovsky V.N., Perepechko Yu.V. Theory of partial melt // Geology and Geo- physics. {{ 1989. {{ Vol. 9. {{ P. 56{64 (In Russian). 6. Dorovsky V.N., Perepechko Yu.V. A hydrodynamic model for a solution in fracture-porous media // Geology and Geophysics. {{ 1996. {{ Iss. 9. {{ P. 123{134 (In Russian). 7. Dorovsky V.N., Perepechko Yu.V., Fedorov A.I. The Stoneley waves in the Biot{Johnson theory and continual ltration theory // Russian Geology and Geophysics. {{ 2012. {{ Vol. 53. {{ P. 621{630. 8. Winkler K.W., Liu H.L., Johnson D.L. Permeability and borehole Stoneley waves: Comparison between experiment and theory // Geophys. {{ 1989. {{ Vol. 54. {{ P. 66{75. 9. Patankar S.V. Numerical Heat Transfer and Fluid Flow. {{ Taylor & Francis Group., 1980. 10. Perepechko Yu.V., Sorokin K.E. Two-velocity dynamics of compressible het- erogeneous media // Natural and Technical Sciences. {{ 2012. {{ No. 5. {{ P. 40{48. 11. Wan D.C., Patnaik B.S.V., Wei G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution // Numerical Heat Transfer. Part B. {{ 2001. {{ Vol. 40. {{ P. 199{288. 12. Massarotti N., Nithiarasu P., Zienkiewicz O.C. Characteristic-Based-Split (CBS) algorithm for incompressible ow problems with heat transfer // Int. J. Numer. Meth. Heat Fluid Flow. {{ 1998. {{ Vol. 8. {{ P. 969{990. 13. Manzari M.T. An explicit nite element algorithm for convective heat trans- fer problems // Int. J. Numer. Meth. Heat Fluid Flow. {{ 1999. {{ Vol. 9. {{ P. 860{877. 14. Perepechko Yu.V., Sorokin K.E., Imomnazarov Kh.Kh. Numerical simula- tion of the free convection in a viscous compressible uid // Bull. Novosi- birsk Comp. Center. Ser. Mathematical Modeling in Geophysics.{{Novosibirsk, 2011. {{ Iss. 14. {{ P. 59{64. 15. Buryatsky E.V., Kostin A.G., Nikiforovich E.I., Rozumnyuk Ch.N. A method of numerical solution of the Navier-Stokes equations in variable velocity- pressure // Applied Mechanics. {{ 2008. {{ Vol. 10, No. 2. {{ P. 13{23 (In Russian).