Инд. авторы: Ivanova E.V., Zamoryanskaya M.V., Pustovarov V.A., Aliev V.S., Gritsenko V.A., Yelisseyev A.P.
Заглавие: Cathodoand photoluminescence increase in amorphous hafnium oxide under annealing in oxygen
Библ. ссылка: Ivanova E.V., Zamoryanskaya M.V., Pustovarov V.A., Aliev V.S., Gritsenko V.A., Yelisseyev A.P. Cathodoand photoluminescence increase in amorphous hafnium oxide under annealing in oxygen // Журнал экспериментальной и теоретической физики. - 2015. - Vol.147. - Iss. 4. - P.820-826. - ISSN 0044-4510.
Внешние системы: РИНЦ: 23607714;
Реферат: eng: Cathodo- and photoluminescence of amorphous nonstoichiometric films of hafnium oxide are studied with the aim to verify the hypothesis that oxygen vacancies are responsible for the luminescence. To produce oxygen vacancies, hafnium oxide was enriched in surplus metal during synthesis. To reduce the oxygen concentration, the film was annealed in oxygen. A qualitative control of the oxygen concentration was carried out by the refractive index. In the initial, almost stoichiometric films we observed a 2.7-eV band in cathodoluminescence. Annealing in oxygen results in a considerable increase in its intensity, as well as in the appearance of new bands at 1.87, 2.14, 3.40, and 3.6 eV. The observed emission bands are supposed to be due to single oxygen vacancies and polyvacancies in hafnium oxide. The luminescence increase under annealing in an oxygen atmosphere may be a result of the emission quenching effect.
Издано: 2015
Физ. характеристика: с.820-826
Цитирование: 1. A. I. Kingon, J. P. Maria, and S. K. Strei er, Nature 406, 1032 (2000). 2. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004). 3. T. V. Perevalov and V. A. Gritsenko, Uspekhi Fiz. Nauk 180, 587 (2010). 4. Hideki Takeuchi, Daewon Ha, and Tsu-Jae King, J.Vac. Sci. Technol. A 22, 1337 (2004). 5. F. Ferrieu, K. Dabertrand, S. Lhostis et al., J. NonCryst. Sol. 353, 658 (2007). 6. J. Ni, Q. Zhou, Z. Li, and Z. Zhang, Appl. Phys. Lett. 93, 011905 (2008). 7. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 65, 174117 (2002). 8. K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, Appl. Phys. Lett. 87, 183505 (2005). 9. P. Broqvist and A. Pasquarello, Appl. Phys. Lett. 89, 262904 (2006). 10. T. David, US Patent 6, 190, 511, February 20 (2001). 11. W. Kern, RCA Rev. 31, 187 (1970). 12. H. R. Kaufman, J. J. Cuomo, and J. M. E. Harper, J. Vac. Sci. Technol. 23, 725 (1982). 13. V. A. Gritsenko, Uspekhi Fiz. Nauk 178, 727 (2008). 14. K. A. Nasyrov and V. A. Gritsenko, J. Appl. Phys. 109, 097705 (2011). 15. G. Zimmerer, Nucl. Instr. Meth. Phys. Res. A 308, 178 (1991). 16. J. Aarik, H. Mangar, M. Kirm, and L. Pung, Thin Sol. Films 466, 41 (2004). 17. V. Kiisk, I. Sildos, S. Lange et al., Appl. Surf. Sci. 247, 412 (2005). 18. T. Ito, M. Maeda, K. Nakamura et al., J. Appl. Phys. 97, 054104 (2005). 19. T. Ito, H. Kato, and Y. Ohki, J. Appl. Phys. 99, 094106 (2006). 20. A. A. Rastorguev, V. I. Belyi, T. P. Smirnova et al., Phys. Rev. B 76, 235315 (2007). 21. D. L. Dexter and J. H. Schulman, J. Chem. Phys. 22,1063 (1954). 22. A. N. Tro mov and M. V. Zamoryanskaya, J. Surf. Invest. X-ray 3, 15 (2009). 23. W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, IEEE Electron Device Lett. 23, 597 (2002). 24. D. S. Jeong and C. S. Hwang, Phys. Rev. B 71, 165327 (2005).