Инд. авторы: Shornikov Y., Dostovalov D., Nasyrova M.
Заглавие: Specification and analysis of transients in electrical power systems using the methodology of hybrid systems
Библ. ссылка: Shornikov Y., Dostovalov D., Nasyrova M. Specification and analysis of transients in electrical power systems using the methodology of hybrid systems // CEUR Workshop Proceedings. - 2017. - Vol.1839. - P.445-457. - ISSN 1613-0073.
Внешние системы: РИНЦ: 31025741; SCOPUS: 2-s2.0-85020513746;
Реферат: eng: This paper discusses discrete-continuous (hybrid) systems and corresponding simulation tools. Modern hybrid systems (HS) formalism can be effectively used in problem-oriented environments of computer analysis. One of the many HS applications is the study of transients in electrical power systems (EPS). A special module is developed in ISMA (translated from Russian 'Instrumental Facilities of Machine Analysis') simulation environment to support the research of transient processes by Park-Gorev's equations. Discrete behavior of EPS associated with nonlinear characteristics of generator speed regulators. Also, the EPS operating mode can be changed upon the occurrence of certain events: switching, short circuit, breakage of power lines, etc. Therefore HS methodology is adequate for description and study of transient processes in EPS. The solver of ISMA uses the library of classical and original numerical methods intended for solving systems of differential-Algebraic equations with discontinuities. The original algorithm of correct event detection is developed for processing gaps, which is an integral part of numerical analysis.
Ключевые слова: Transient process; Simulation environment; Original algorithms; Nonlinear characteristics; Modal behavior; Event detection; Electrical power system; Differential algebraic equations; Transients; Numerical methods; Hybrid systems; Electric power systems; Differential equations; Algebra; Transient processes; Principle circuits; Numerical analysis; Modal behavior; Library of numerical methods; Hybrid systems; Event detection; Numerical analysis; Power quality;
Издано: 2017
Физ. характеристика: с.445-457
Конференция: Название: Международная конференция «Математические и информационные технологии, MIT-2016»
Аббревиатура: MIT-2016
Город: Врнячка Баня, Будва
Страна: Сербия, Черногория
Даты проведения: 2016-08-28 - 2016-09-05
Ссылка: http://conf.nsc.ru/MIT-2016
Цитирование: 1. Harel, D., Pnueli, A., Schmidt, J.P., Sherman, R.: On the Formal Semantics of Statecharts. In: Proc. 2nd IEEE Symp. On Logic in Computer Science, pp. 54-64. IEEE Press, New York (1987). 2. Maler, O., Manna, Z., Pnueli, A.: From Timed to Hybrid systems. In: Real-Time: Theory in Practice, LNCS, vol. 600, pp. 447-484. Springer-Verlag (1992). 3. Senichenkov, B.: Numerical Simulation of Hybrid Systems. Publishing House of Politechnical University, St. Petersburg (2004). 4. Novikov, E.A., Shornikov, V.: Computer Simulation of Stiff Hybrid Systems: Monograph. Publishing House of Novosibirsk State Technical University, Novosibirsk (2012). 5. Lee, E.A., Zhenq, H.: Operational Semantics of Hybrid Systems. In: Proc. of Hybrid Systems: Computational and Control (HSCC), vol. 3414, pp. 25-53. Zurich (2005). 6. Esposito, J.M., Kumar, V.: A State Event Detection Algorithm for Numerically Simulating Hybrid Systems with Model Singularities. In: ACM Transactions on Modeling and Computer Simulation, vol. 17, issue 1, pp. 1-22 (2007). 7. Venikov, V.A.: Transient Electromechanical Processes in Electrical Systems. Vysshaja Shkola, Moscow (1985). 8. Lukashov, S., Kalyuzhnyj, A.H., Lizalek, N.N.: Long-Term Transients in Power Systems. Nauka, Novosibirsk (1985). 9. Fomina, T.: Development of the Algorithm for Calculating the Transients in Complex Regulated EPS: Dissertation of the Candidate of Technical Sciences (PhD). Moscow (2014). 10. System Research in the Energy Sector. In: Proceedings of Young Scientists ESI SB RAS, vol. 44. ESI SB RAS, Irkutsk (2014). 11. Nepsha, F.S., Otdel'nova, G.V., Savinkina, O.A.: Compare the Functionality of Existing Software to Calculate and Analyze of Electric Modes. In: Vestnik of Kuzbass State Technical University, vol. 2(96), pp. 116-118 (2013). 12. Shornikov, V., Bessonov, A.V.: The Core Components of "ISMA 2015" Software. Certificate of State Registration of Computer Programs # 2015617235. Federal Service For Intellectual Property (Rospatent), Moscow (2015). 13. Shornikov, V., Bessonov, A.V.: A Unified Approach to Computer Simulation of Hybrid Systems. In: Information Technology of Modeling and Control, vol. 3(93), pp. 289-298 (2015). 14. Shornikov, V., Bessonov, A.V.: The Component for Specification of Hybrid Systems in LISMA PDE Language. Certificate of State Registration of Computer Programs # 2015617191. Federal Service For Intellectual Property (Rospatent), Moscow (2015). 15. Skurihina, K.A., Arestova, A., Armeev, D.V.: A Study of Dynamic Properties of MicroGrid in Parallel Operation with the Power System. In: Siberian Journal of Science, vol. 1(15), pp. 93-102 (2015). 16. Novikov, E.A.: Explicit Methods for Stiff Systems. Nauka, Novosibirsk (1997). 17. Fehlberg E.: Classical fifth-, sixth-, seventh-And eighth order Runge-Kutta formulas with step size contro. In: Computing, vol.4, pp. 93-100 (1969). 18. Esposito, J.M., Kumar, V., Pappas, G.J.: Accurate event detection for simulating hybrid systems. In: Hybrid Systems: Computation and Control (HSCC), Volume LNCS 2034, pp. 204-217 (2001). 19. Novikov, E.A., Yumatova, L.A. Some methods for solving of ordinary differential equations unresolved with respect to derivative. Reports of the USSR Academy of Sciences, 1987, 295 (4), 809-812. 20. Dostovalov, D.N., Shornikov, V. Simulation of stiff hybrid systems with onesided events in the ISMA environment. Computer simulation 2012: Proceedings of the international workshop, St. Petersburg, 20 - 21 September 2012, 2012, 34-41. 21. Hairer, E., Wanner, G. Solving ordinary differential equations II. Stiff and differential-Algebraic problems. 1996, Berlin: Springer. 22. Shornikov, V., Novikov, A.E., Novikov, E.A. Approximation of the Jacobi matrix in (2, 2)-method for solving stiff systems. Proceedings of the Russian Higher School of Academy of Sciences of Russian Federation, 2008, 1 (10), 31-44. 23. Rosenbrock, H.H. Some general implicit processes for the numerical solution of differential equations. Computer, 1963, 5, 329330.