Инд. авторы: Miloshevich H., Zakharov Y., Shokin Y., Dolgov D., Grigorieva I.
Заглавие: Mathematical modeling of artificial mitral heart valve
Библ. ссылка: Miloshevich H., Zakharov Y., Shokin Y., Dolgov D., Grigorieva I. Mathematical modeling of artificial mitral heart valve // CEUR Workshop Proceedings. - 2017. - Vol.1839. - P.380-392. - ISSN 1613-0073.
Внешние системы: РИНЦ: 31039825; SCOPUS: 2-s2.0-85020503270;
Реферат: eng: The research shows the mathematical model, describing the dynamics of the artificial aortic heart valve and the model of blood thrombus moving in large vessels, as well as the method of numerical calculation of these models. There are represented numerical modelling results of the tricuspid valve operation and the blood thrombus moving in large vessels.
Ключевые слова: Aneurysm; Artificial mitral heart valve; Immersed boundary method; Mathematical modeling; Blood; Blood vessels; Mathematical models; Numerical methods; Artificial heart; Tricuspid valve; Numerical calculation; Immersed boundary methods; Heart valves; Aortic heart valves; Aneurysm; Turbulent flow;
Издано: 2017
Физ. характеристика: с.380-392
Конференция: Название: Международная конференция «Математические и информационные технологии, MIT-2016»
Аббревиатура: MIT-2016
Город: Врнячка Баня, Будва
Страна: Сербия, Черногория
Даты проведения: 2016-08-28 - 2016-09-05
Ссылка: http://conf.nsc.ru/MIT-2016
Цитирование: 1. Abas A., Mokhtar H.N., Ishak M. H. H., Abdullah M. Z. and Tian A. H.: Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem. Computational and Mathematical Methods in Medicine. (2016) http://dx.doi.org/10.1155/2016/6143126. 2. Barbarash L. S., Zhuravleva I..: Bioprosthetic heart valve evolution: Two decades of advances and challenges. In: The multifaceted issues of the cardiovascular diseases. 2012. No 1. http://cyberleninka.ru/article/n/evolyutsiya-bioprotezov-klapanovserdtsa-dostizheniya-i-problemy-dvuh-desyatiletiy. 3. Caballero A.D., Lan S.:Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. In: Comput Methods Biomech Biomed Engin. Aug; 18(11) pp. 1200-1216. (2015). 4. Dolgov D.A., Zaharov N.: Modeling of the inhomogeneous viscous fluid in the large blood vessels. In: Vestnik KemSU, No 2 (62), Vol. 1, pp. 30 - 34. (2015). 5. Dolgov D., Zakharov Y.:2015 Mathematical modelling of artificial heart valve performance. In: "Stability and Control Processes" in Memory of V.I. Zubov (SCP), 2015 International Conference, pp. 518-521. (2015). 6. Fernandez M., Gerbeau J-F., Martin V.: Numerical simulation of blood flows through a porous interface. ESAIM : M2AN, 42, No 6, pp. 961-990, (2008) https://hal.archives-ouvertes.fr/inria-00136971v2. 7. Griffith B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. International Journal for Numerical Methods in Biomedical Engineering. Wiley Online Library, Vol. 28, 3. pp. 317-345. (2012). 8. Grinberg L., Fedosov D.A., Karniadakis G.E.: Parallel multiscale simulations of a brain aneurysm. Journal of computational physics, 244, pp. 131-147, Elsevier. (2013). 9. Institute D.C.R. Adult cardiac surgery database, executive summary. (2015) http://www.sts.org/sites/default/files/documents/2015Harvest2-ExecutiveSummary.pdf. 10. Ivanov D.V., Dol A.V., Pavlova O.E., Aristambekova A.V.: Modeling of Willis circle of the healthy human and during the disease. In: Russian journal of the biomechanics. V. 17. - N 3(61). pp. 49-63. (2013). 11. Matsuzawa T., Gao F., Qiao A., Ohta O. and Okada H.: Numerical Simulation in Aortic Arch Aneurysm, Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture, Prof. Reinhart Grundmann (Ed.), InTech, (2011) http://www.intechopen.com/books/etiology-pathogenesis-And-pathophysiology-of-Aortic-Aneurysms-Andaneurysm-rupture-numerical-simulation-in-Aortic-Arch-Aneurysm. 12. Peskin C.S. The immersed boundary method. Acta numerica. Cambridge Univ Press. Vol. 11. pp. 479-517. (2002). 13. Razzaq M., Turek S., Hron J., Acker J.F., Weichert F., Wagner M., Grunwald I.Q., C. Roth, and Romeike B.F.: Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics Fluid-Structure Interaction. Theory, Numerics and Applications pp. 283-294, Herrsching am Ammersee. (2008). 14. Whitmore R.L.: Reology of circulation. Pergamon. (1968). 15. Xu X., Lee J. S.: Application of the lattice Boltzmann method to flow in aneurysm with ring-shaped stent obstacles In: International Journal for Numerical Methods in Fluids, Volume 59, Issue 6, pp. 691-710. (2009). 16. Yanchenko A. A., Cherevko A. A., Chupakhin A. P., Krivoshapkin A. L., Orlov K. : Modelling of nonsteady hemodynamics in cerebral aneurysm of blood vessel In: Russ. J. Numer. Anal. Math. Modelling. V. 29, No. 5, P. 307-318. (2014). 17. Zhang Y., Bajaj C.: Finite element meshing for cardiac analysis. Univ. of Texas at Austin: ICES Technical Report. (2004).