Инд. авторы: Blokhin A.M., Kruglova E.A., Semisalov B.V.
Заглавие: Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders
Библ. ссылка: Blokhin A.M., Kruglova E.A., Semisalov B.V. Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders // Computational Mathematics and Mathematical Physics. - 2017. - Vol.57. - Iss. 7. - P.1181-1193. - ISSN 0965-5425. - EISSN 1555-6662.
Внешние системы: DOI: 10.1134/S0965542517070053; РИНЦ: 31067118; SCOPUS: 2-s2.0-85026830210; WoS: 000406766300010;
Реферат: eng: A boundary value problem for a quasi-linear equation determining the velocity profile of a flow of a polymer fluid in a pipe formed by two coaxial cylinders is considered. On the basis of methods of approximation without saturation, a computational algorithm of increased accuracy is developed, making it possible to solve the problem in a wide range of parameters, including record-low values of r0, the radius of the inner cylinder. © 2017, Pleiades Publishing, Ltd.
Ключевые слова: quasi-linear equation; problem of steady-state flows of an incompressible fluid; nonlocal algorithm without saturation; boundary value problem;
Издано: 2017
Физ. характеристика: с.1181-1193
Цитирование: 1. W. W. Graessley, Polymeric Liquids and Networks: Dynamics and Rheology (Garland Science, London, 2008). 2. M. Kontopoulou, Applied Polymer Rheology: Polymeric Fluids with Industrial Applications (Wiley, Hoboken, 2012). 3. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, London, 1980). 4. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Springer, Berlin, 1994). 5. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986). 6. G. Astarita and G. Marucci, Principles of Non-Newtonian Fluid Mechanics (McGraw-Hill, New York, 1974). 7. G. Pyshnograi, H. Joda, and I. Pyshnograi, “The mesoscopic constitutive equations for polymeric fluids and some examples of viscometric flows,” World J. Mech. 2 (1), 19–27 (2012). doi doi 10.4236/wjm.2012.21003 8. A. I. Leonov, A Brief Introduction to the Rheology of Polymeric Fluids (Coxmoor, Oxford, 2008). 9. H. Sun and S.-Q. Wang, “Shear and extensional rheology of entangled polymer melts: Similarities and differences,” Sci. China Chem. 55 (5), 779–786 (2012). 10. G. Marcone, E. Orlandini, A. L. Stella, and F. Zonta, “What is the length of a knot in a polymer?,” J. Phys. A Math. Gen. 38, L15–L21 (2005). 11. K. Kremer, S. K. Sukumaran, R. Everaers, and G. S. Grest, “Entangled polymer systems,” Comput. Phys. Commun. 169 (1–3), 75–81 (2005). 12. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed. (Springer, Berlin, 2010). doi doi 10.1007/978-90-481-2231-8 13. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymer Systems (AltGPA, Barnaul, 2012). 14. M. A. Makarova, A. S. Gusev, G. V. Pyshnograi, and A. A. Rybakov, “Nonlinear viscoelasticity theory of linear polymers,” Elektron. Fiz.-Tekh. Zh. 2, 1–54 (2007). 15. A. M. Blokhin, B. V. Semisalov, and A. S. Shevchenko, “Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid,” Mat. Model. 28 (10), 3–22 (2016). 16. A. M. Blokhin and B. V. Semisalov, “A steady flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section,” Sib. Zh. Ind. Mat. 17 (4), 38–47 (2014). 17. A. M. Blokhin and A. S. Rudometova, “Stationary solutions to the equations describing the nonisothermic electrical convection of a weakly conductive incompressible polymeric fluid,” Sib. Zh. Ind. Mat. 18 (1), 3–13 (2015). 18. A. M. Blokhin, A. S. Ibragimova, and B. V. Semisalov, “Design of a computational algorithm for a system of moment equations describing charge transport in semiconductors,” Mat. Model. 21 (4), 15–34 (2009). 19. B. V. Semisalov, “Nonlocal algorithm for finding solutions of the Poisson equation and its applications,” Vychisl. Mat. Mat. Fiz. 54 (7), 1110–1135 (2014). 20. K. I. Babenko, Fundamentals of Numerical Analysis (Fizmatlit, Moscow, 1986) [in Russian]. 21. B. V. Semisalov, “A fast nonlocal algorithm for solving Neumann–Dirichlet boundary value problems with error control,” Vychisl. Metody Program. 17 (4), 500–522 (2016).