Цитирование: | 1. E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, and G. Lahav, Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell 30 (2008), No. 3, 277-289.
2. A. Bisio, V. Sanctis, V. Vescovo, M. Denti, A. Jegga, A. Inga, and Ya. Ciribilli, Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 13 (2013), 552, 13p.
3. T.-C. Chang, E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra, and J. T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell 26 (2007), 745-752.
4. C.-Y. Cheng, C.-I. Hwang, D. C. Corney, A. Flesken-Nikitin, J. Long-Chang, G. M. Oner, R. J. Munroe, J. C. Schimenti, H. Hermeking, and A. Yu. Nikitin, MiR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Reports 6 (2014), No. 6, 1000-1007.
5. E. Goodall, P. R. Heath, O. Bandmann, Ja. Kirby, and P. J. Shaw, Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience 7 (2013), Article 178, 16p.
6. H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumor suppression. Nature Reviews Cancer 12 (2012), No. 9, 613-626.
7. M. V. Iorio, R. Visone, G. Leva, V. Donati, F. Petrocca, P. Casalini, C. Taccioli, S. Volinia, C. G. Liu, H. Alder, G. A. Calin, S. Menard, and C. M. Croce, MicroRNA signatures in human ovarian cancer. Cancer Res. 67 (2007), No. 18, 8699-8707.
8. M. D. Jansson and A. H. Lund, MicroRNA and cancer. Molecular Oncology 6 (2012), No. 6, 590-610.
9. Q. Ji, X. Hao, M. Zhang, W. Tang, Ya. Meng, L. Li, D. Xiang, J. T. DeSano, G. T. Bommer, D. Fan, E. R. Fearon, T. S. Lawrence, and L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4 (2009), No. 8, e6816, 13p.
10. S. Kabaria, D. C. Choi, A. D. Chaudhuri, M. M. Mouradian, and E. Junn, Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinsons disease. FEBS Lett. 589 (2015), No. 3, 319-325.
11. N. N. Kolesnikov, S. E. Titov, Yu. A. Veryaskina, E. V. Karpinskaya, S. P. Schevschenko, L. G. Akhmerova, M. K. Ivanov, V. V. Kozlov, E. A. Elisaphenko, L. F. Gulyaeva, and I. F. Zhimulev, MicroRNA, evolution and cancer. Tsitologiya 55 (2013), No. 3, 159-164.
12. F. A. Koshkin, D. A. Chistyakov, A. G. Nikitin, A. N. Konovalov, A. A. Potapov, D. Yu. Usachyov, D. I. Pitskhelauri, G. L. Kobyakov, L. V. Shishkina, and V. P. Chekhonin, Profile of MicroRNA expression in brain tumors of different malignancy. Bull. Exper. Biol. Med. 157 (2014), No. 6, 794-797.
13. D. Lane and A. Levine, p53 research: The past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2 (2010), No. 12, a000893, 10p.
14. E. Minones-Moyano, S. Porta, G. Escarams, R. Rabionet, S. Iraola, B. Kagerbauer, Yo. Espinosa-Parrilla, I. Ferrer, X. Estivill, and E. Marti, MicroRNA profiling of Parkinsons disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human Molecular Genetics 20 (2011), No. 15, 3067-3078.
15. E. G. Nikitina, L. N. Urazova, and V. N. Stegny, MicroRNAs and human cancer. Experimental Oncology 34 (2012), No. 1, 2-8.
16. K. Otsuka and T. Ochiya, Genetic networks lead and follow tumor development: MicroRNA regulation of cell cycle and apoptosis in the p53 pathways. BioMed Research Int. 2014 (2014), Article ID 749724. 10p.
17. N. Raver-Shapira, E. Marciano, E. Meiri, Ya. Spector, N. Rosenfeld, N. Moskovits, Z. Bentwich, and M. Oren, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26 (2007), 731-743.
18. M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, and Y.-Y. Mo, P53 represses c-Myc through induction of the tumor suppressor miR-145. PNAS 106 (2009), No. 9, 3207-3212.
19. L. V. Shulenina, V. F. Mikhailov, E. V. Ledin, N. F. Raeva, and G. D. Zasukhina, Evaluation of P53-dependent system of maintaining the genome stability by content of microRNA and mRNA in blood of cancer patients. Medical Radiology and Radiation Safety 60 (2015), No. 1, 5-14.
20. V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Maister, and H. Hermeking, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing. Cell Cycle 6 (2007), No. 13, 1586-1593.
21. G. Tiana, M. H. Jensen, and K. Sneppen, Time delay as a key to apoptosis induction in the p53 network. Eur. Phys. J. B. 29 (2002), 135-140.
22. S. E. Titov, P. S. Demenkov, M. K. Ivanov, E. S. Malakhina, T. L. Poloz, E. V. Tsivlikova, M. S. Ganzha, S. P. Shevchenko, L. F. Gulyaeva, and N. N. Kolesnikov, Selection and validation of miRNAs as normalizers for profiling expression of microRNAs isolated from thyroid fine needle aspiration smears. Oncology Rep. 36 (2016), No. 5, 2501-2510.
23. O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of functioning of the p53-Mdm2 protein system. Bull. Exper. Biol. Med. 157 (2014), No. 2, 291-294.
24. O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of p53-Mdm2 protein biological system regulation. Bull. Exper. Biol. Med. 157 (2014), No. 4, 535-538.
25. O. F. Voropaeva, S. R. Senchukova, K. V. Brodt, K. E. Garbuzov, A. V. Melnitchenko, and A. A. Starikova, Numerical simulation of ultradian oscillations in p53-Mdm2 network under stress conditions. Math. Models and Computer Simulations 7 (2015), No. 3, 281-293.
26. A. O. Zheltukhin and P. M. Chumakov, Constitutive and induced functions of the p53 gene. Biochemistry 75 (2010), No. 13, 1692-1721.
|