Инд. авторы: Voropaeva O.F., Senotrusova S.D., Shokin Y.I.
Заглавие: Numerical investigation of diagnostic properties of p53-dependent microRNAs
Библ. ссылка: Voropaeva O.F., Senotrusova S.D., Shokin Y.I. Numerical investigation of diagnostic properties of p53-dependent microRNAs // Russian Journal of Numerical Analysis and Mathematical Modelling. - 2017. - Vol.32. - Iss. 3. - P.203-213. - ISSN 0927-6467. - EISSN 1569-3988.
Внешние системы: DOI: 10.1515/rnam-2017-0018; РИНЦ: 31027524; SCOPUS: 2-s2.0-85021322099; WoS: 000404226400006;
Реферат: eng: In the present paper we propose a mathematical model and study numerically the functioning of the p53 tumors suppressor protein and the direct positive connection of microRNA molecules related to it. The adequacy of the model is confirmed by qualitative concordance of calculation results with the experimental data concerning transactivation of specific p53-dependent microRNAs. Estimates of stability of individual and p53-mediated properties of microRNA as factors in diagnosing cancer and neurodegenerative diseases are given within the framework of the accepted model. © 2017 Walter de Gruyter GmbH, Berlin/Boston 2017.
Ключевые слова: Delay differential equations; Calculation results; Tumors; Neurodegenerative diseases; Differential equations; Diagnosis; Computer simulation; tumor marker.; p53; Numerical simulation; Numerical investigations; Transactivation; Tumor markers; RNA; MicroRNAs; delay differential equation; Mdm2; microRNA; Mdm2;
Издано: 2017
Физ. характеристика: с.203-213
Цитирование: 1. E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, and G. Lahav, Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell 30 (2008), No. 3, 277-289. 2. A. Bisio, V. Sanctis, V. Vescovo, M. Denti, A. Jegga, A. Inga, and Ya. Ciribilli, Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 13 (2013), 552, 13p. 3. T.-C. Chang, E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra, and J. T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell 26 (2007), 745-752. 4. C.-Y. Cheng, C.-I. Hwang, D. C. Corney, A. Flesken-Nikitin, J. Long-Chang, G. M. Oner, R. J. Munroe, J. C. Schimenti, H. Hermeking, and A. Yu. Nikitin, MiR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Reports 6 (2014), No. 6, 1000-1007. 5. E. Goodall, P. R. Heath, O. Bandmann, Ja. Kirby, and P. J. Shaw, Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience 7 (2013), Article 178, 16p. 6. H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumor suppression. Nature Reviews Cancer 12 (2012), No. 9, 613-626. 7. M. V. Iorio, R. Visone, G. Leva, V. Donati, F. Petrocca, P. Casalini, C. Taccioli, S. Volinia, C. G. Liu, H. Alder, G. A. Calin, S. Menard, and C. M. Croce, MicroRNA signatures in human ovarian cancer. Cancer Res. 67 (2007), No. 18, 8699-8707. 8. M. D. Jansson and A. H. Lund, MicroRNA and cancer. Molecular Oncology 6 (2012), No. 6, 590-610. 9. Q. Ji, X. Hao, M. Zhang, W. Tang, Ya. Meng, L. Li, D. Xiang, J. T. DeSano, G. T. Bommer, D. Fan, E. R. Fearon, T. S. Lawrence, and L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4 (2009), No. 8, e6816, 13p. 10. S. Kabaria, D. C. Choi, A. D. Chaudhuri, M. M. Mouradian, and E. Junn, Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinsons disease. FEBS Lett. 589 (2015), No. 3, 319-325. 11. N. N. Kolesnikov, S. E. Titov, Yu. A. Veryaskina, E. V. Karpinskaya, S. P. Schevschenko, L. G. Akhmerova, M. K. Ivanov, V. V. Kozlov, E. A. Elisaphenko, L. F. Gulyaeva, and I. F. Zhimulev, MicroRNA, evolution and cancer. Tsitologiya 55 (2013), No. 3, 159-164. 12. F. A. Koshkin, D. A. Chistyakov, A. G. Nikitin, A. N. Konovalov, A. A. Potapov, D. Yu. Usachyov, D. I. Pitskhelauri, G. L. Kobyakov, L. V. Shishkina, and V. P. Chekhonin, Profile of MicroRNA expression in brain tumors of different malignancy. Bull. Exper. Biol. Med. 157 (2014), No. 6, 794-797. 13. D. Lane and A. Levine, p53 research: The past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2 (2010), No. 12, a000893, 10p. 14. E. Minones-Moyano, S. Porta, G. Escarams, R. Rabionet, S. Iraola, B. Kagerbauer, Yo. Espinosa-Parrilla, I. Ferrer, X. Estivill, and E. Marti, MicroRNA profiling of Parkinsons disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human Molecular Genetics 20 (2011), No. 15, 3067-3078. 15. E. G. Nikitina, L. N. Urazova, and V. N. Stegny, MicroRNAs and human cancer. Experimental Oncology 34 (2012), No. 1, 2-8. 16. K. Otsuka and T. Ochiya, Genetic networks lead and follow tumor development: MicroRNA regulation of cell cycle and apoptosis in the p53 pathways. BioMed Research Int. 2014 (2014), Article ID 749724. 10p. 17. N. Raver-Shapira, E. Marciano, E. Meiri, Ya. Spector, N. Rosenfeld, N. Moskovits, Z. Bentwich, and M. Oren, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26 (2007), 731-743. 18. M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, and Y.-Y. Mo, P53 represses c-Myc through induction of the tumor suppressor miR-145. PNAS 106 (2009), No. 9, 3207-3212. 19. L. V. Shulenina, V. F. Mikhailov, E. V. Ledin, N. F. Raeva, and G. D. Zasukhina, Evaluation of P53-dependent system of maintaining the genome stability by content of microRNA and mRNA in blood of cancer patients. Medical Radiology and Radiation Safety 60 (2015), No. 1, 5-14. 20. V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Maister, and H. Hermeking, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing. Cell Cycle 6 (2007), No. 13, 1586-1593. 21. G. Tiana, M. H. Jensen, and K. Sneppen, Time delay as a key to apoptosis induction in the p53 network. Eur. Phys. J. B. 29 (2002), 135-140. 22. S. E. Titov, P. S. Demenkov, M. K. Ivanov, E. S. Malakhina, T. L. Poloz, E. V. Tsivlikova, M. S. Ganzha, S. P. Shevchenko, L. F. Gulyaeva, and N. N. Kolesnikov, Selection and validation of miRNAs as normalizers for profiling expression of microRNAs isolated from thyroid fine needle aspiration smears. Oncology Rep. 36 (2016), No. 5, 2501-2510. 23. O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of functioning of the p53-Mdm2 protein system. Bull. Exper. Biol. Med. 157 (2014), No. 2, 291-294. 24. O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of p53-Mdm2 protein biological system regulation. Bull. Exper. Biol. Med. 157 (2014), No. 4, 535-538. 25. O. F. Voropaeva, S. R. Senchukova, K. V. Brodt, K. E. Garbuzov, A. V. Melnitchenko, and A. A. Starikova, Numerical simulation of ultradian oscillations in p53-Mdm2 network under stress conditions. Math. Models and Computer Simulations 7 (2015), No. 3, 281-293. 26. A. O. Zheltukhin and P. M. Chumakov, Constitutive and induced functions of the p53 gene. Biochemistry 75 (2010), No. 13, 1692-1721.