Инд. авторы: Sildos I., Loot A., Kiisk V., Puust L., Hizhnyakov V., Yelisseyev A., Osvet A., Vlasov I.
Заглавие: Spectroscopic study of NE8 defect in synthetic diamond for optical thermometry
Библ. ссылка: Sildos I., Loot A., Kiisk V., Puust L., Hizhnyakov V., Yelisseyev A., Osvet A., Vlasov I. Spectroscopic study of NE8 defect in synthetic diamond for optical thermometry // Diamond and Related Materials. - 2017. - Vol.76. - P.27-30. - ISSN 0925-9635. - EISSN 1879-0062.
Внешние системы: DOI: 10.1016/j.diamond.2017.04.002; РИНЦ: 29493203; SCOPUS: 2-s2.0-85017451558; WoS: 000403858500005;
Реферат: eng: We carried out a laser spectroscopic investigation of high-pressure, high-temperature (HTHP) synthetic diamond containing NE8 defects. In the photoluminescence (PL) emission spectra the defects have a zero-phonon line (ZPL) at 794 nm. Under 730 nm excitation the width and position of the ZPL as well as the Debye-Waller factor showed systematic temperature dependences which were modelled in accordance of a modified model of impurity defects in solids. A strong dependence of the position of the 794 nm ZPL on temperature suggests that NE8-containing diamond could be suitable for sensitive optical thermometry above 200 K. Further, the PL in the NIR spectral range makes the diamond crystalline particles promising temperature sensors for biomedical applications. © 2017 Elsevier B.V.
Ключевые слова: Synthetic diamonds; Temperature dependence; Spectroscopic studies; Spectroscopic investigations; Photoluminescence emission; Optical thermometry; Optical defects; Crystalline particles; Biomedical applications; Thermometers; Temperature sensors; Temperature distribution; Spectroscopic analysis; Phonons; Medical applications; High pressure effects in solids; Emission spectroscopy; Diamonds; Defects; Synthetic diamond; Optical thermometry; Optical defect;
Издано: 2017
Физ. характеристика: с.27-30
Цитирование: 1. [1] Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L., The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528 (2013), 1–45. 2. [2] Kurtsiefer, C., Mayer, S., Zarda, P., Weinfurter, H., Stable solid-state source of single photons. Phys. Rev. Lett. 85 (2000), 290–293. 3. [3] Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M., Yu, Y.C., Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127 (2005), 17604–17605. 4. [4] Plakhotnik, T., Gruber, D., Luminescence of nitrogen-vacancy centres in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Phys. Chem. Chem. Phys. 12 (2010), 9751–9756. 5. [5] Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J., Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455 (2008), 648–651. 6. [6] Sternschulte, H., Thonke, K., Sauer, R., Münzinger, P.C., Michler, P., 1.681-eV luminescence centre in chemical-vapor-deposited homoepitaxial diamond films. Phys. Rev. B 50 (1994), 14554–14560. 7. [7] Merson, T.D., Castelletto, S., Aharonovich, I., Turbic, A., Kilpatrick, T.J., Turnley, A.M., Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells. Opt. Lett. 38 (2013), 4170–4173. 8. [8] Wang, C., Kurtsiefer, C., Weinfurter, H., Burchard, B., Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B Atomic Mol. Phys. 39 (2006), 37–41. 9. [9] Vlasov, I.I., Shiryaev, A.A., Rendler, T., Steinert, S., Lee, S.-Y., Antonov, D., Vörös, M., Jelezko, F., Fisenko, A.V., Semjonova, L.F., Biskupek, J., Kaiser, U., Lebedev, O.I., Sildos, I., Hemmer, P.R., Konov, V.I., Gali, A., Wrachtrup, J., Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9 (2014), 54–58. 10. [10] Vlasov, I.I., Shenderova, O., Turner, S., Lebedev, O.I., Basov, A.A., Sildos, I., Rähn, M., Shiryaev, A.A., Van Tendeloo, G., Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6 (2010), 687–694. 11. [11] Nadolinny, V.A., Yelisseyev, A.P., Baker, J.M., Newton, M.E., Twitchen, D.J., Lawson, S.C., Yuryeva, O.P., Feigelson, B.N., A study of 13C hyperfine structure in the EPR of nickel–nitrogen-containing centres in diamond and correlation with their optical properties. J. Phys. Condens. Matter 11 (1999), 7357–7376. 12. [12] Yelisseyev, A., Lawson, S., Sildos, I., Osvet, A., Nadolinny, V., Feigelson, B., Baker, J.M., Newton, M., Yuryeva, O., Effect of HPHT annealing on the photo-luminescence of synthetic diamonds grown in the Fe–Ni–C system. Diam. Relat. Mater. 12 (2003), 2147–2168. 13. [13] Rabeau, J.R., Chin, Y.L., Prawer, S., Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86 (2005), 131926–131929. 14. [14] Gaebel, T., Popa, I., Gruber, A., Domhan, M., Jelezko, F., Wrachtrup, J., Stable single-photon source in the near infrared. New J. Phys., 6, 2004, 98. 15. [15] Marshall, G.D., Gaebel, T., Matthews, J.C.F., Enderlein, J., O'Brien, J.L., Rabeau, J.R., Coherence properties of a single dipole emitter in diamond. New J. Phys., 13, 2011, 055016. 16. [16] Pezzagna, S., Rogalla, D., Wildanger, D., Meijer, J., Zaitsev, A., Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks. New J. Phys., 13, 2011, 035024. 17. [17] Hizhnyakov, V., Zero-phonon lines of systems with different dimensions and unconventional vibronic interactions. J. Phys. Condens. Matter, 24, 2012, 104011. 18. [18] Rebane, K., Impurity Spectra of Solids. 1970, Plenum Press, New York–London. 19. [19] Fitchen, D.B., Silsbee, R.H., Fulton, T.A., Wolf, E.L., Zero-phonon transitions of colour centers in alkali halides. Phys. Rev. Lett. 11 (1963), 275–277. 20. [20] Hizhnyakov, V., Kaasik, H., Sildos, I., Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state. Phys. Status Solidi B 234 (2002), 644–653. 21. [21] Kiisk, V., Palm, V., Suisalu, A., Sildos, I., Peculiarities of SHB in the 637 nm line of N-V defects in CVD-grown diamond. J. Lumin. 86 (2000), 349–353. 22. [22] Maradudin, A.A., Theoretical and experimental aspects of the effects of point defects and disorder on the vibrations of crystals. Solid State Phys. 18 (1966), 273–420. 23. [23] Müller, T., Aharonovich, I., Lombez, L., Alaverdyan, Y., Vamivakas, A.N., Castelletto, S., Jelezko, F., Wrachtrup, J., Prawer, S., Atature, M., Wide-range electrical tunability of single-photon emission from chromium-based colour centres in diamond. New J. Phys., 13, 2011, 075001. 24. [24] Sildos, I., Osvet, A., Spectral hole burning study of a neutron-irradiated type IaB natural diamond. Diam. Relat. Mater. 3 (1994), 725–736.