Цитирование: | 1. Schlichting, H., Gersten, K., Boundary-Layer Theory, 2000, Springer-Verlag, Berlin, Heidelberg.
2. Roe, P.L., Computational fluid dynamics — retrospective and prospective. Int. J. Comput. Fluid Dyn. 19:8 (2005), 581–594.
3. Tikhonov, A.N., Samarskii, A.A., Homogeneous difference schemes. Zh. Vychisl. Mat. Mat. Fiz. 1:1 (1961), 5–63.
4. Tikhonov, A.N., Samarskii, A.A., Homogeneous difference schemes on non-uniform nets. Zh. Vychisl. Mat. Mat. Fiz. 2:5 (1962), 812–832.
5. Il'in, A.M., Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes Acad. Sci. USSR 6:2 (1969), 596–602.
6. Roos, H.-G., Ten ways to generate the Il'in and related schemes. J. Comput. Appl. Math. 53:1 (1994), 43–59.
7. Eymard, R., Fuhrmann, J., Gärtner, K., A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems. Numer. Math. 102:3 (2006), 463–495.
8. Numerov, B.V., Note on the numerical integration of d2xdt2=f(x,t). Astron. Nachr. 230:19 (1927), 359–364.
9. Numerov, B.V., A method of extrapolation of perturbations. Mon. Not. R. Astron. Soc. 84:8 (1924), 592–602.
10. Phaneendra, K., Rakmaiah, S., Reddy, M.C.K., Computational method for singularly perturbed boundary value problems with dual boundary layer. Procedia Eng. 127 (2015), 370–376.
11. Sudobicher, V.G., Shugrin, S.M., Flow along a dry channel. Izv. Akad. Nauk SSSR 13:3 (1968), 116–122.
12. Alalykin, G.B., Godunov, S.K., Kireyeva, L.L., Pliner, L.A., Solution of One-Dimensional Problems in Gas Dynamics on Moving Grids, 1970, Nauka, Moscow.
13. Farrell, P.A., Miller, J.J.H., O'Riordan, E., Shishkin, G.I., A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation. SIAM J. Numer. Anal. 33:3 (1996), 1135–1149.
14. Keller, H.B., Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10:1 (1978), 417–433.
15. Ferreira, J.A., De Oliveira, P., Convergence properties of numerical discretizations and regridding methods. J. Comput. Appl. Math. 45:3 (1993), 321–330.
16. Samarskii, A.A., The Theory of Difference Schemes, 2001, CRC Press, New York.
17. Bakhvalov, N.S., The optimization of methods of solving boundary value problems with a boundary layer. USSR Comput. Math. Math. Phys. 9:4 (1969), 139–166.
18. Ferreira, J.A., Grigorieff, R.D., Supraconvergence and supercloseness of a scheme for elliptic equations on nonuniform grids. Numer. Funct. Anal. Optim. 27:5–6 (2006), 539–564.
19. Emmrich, E., Grigorieff, R.D., Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order Sobolev spaces. Comput. Methods Appl. Math. 6:2 (2006), 154–177.
20. Huang, W., Russell, R.D., Adaptive Moving Mesh Methods Applied Mathematical Sciences, vol. 174, 2011, Springer New York, New York, NY.
21. Budd, C., Dorodnitsyn, V., Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation. J. Phys. A: Math. Gen. 34:48 (2001), 10387–10400.
22. Budd, C.J., Piggott, M.D., The geometric integration of scale-invariant ordinary and partial differential equations. J. Comput. Appl. Math. 128:1–2 (2001), 399–422.
23. Chhay, M., Hoarau, E., Hamdouni, A., Sagaut, P., Comparison of some Lie-symmetry-based integrators. J. Comput. Phys. 230:5 (2011), 2174–2188.
24. Dorodnitsyn, V.A., Finite difference models entirely inheriting continuous symmetry of original differential equations. Internat. J. Modern Phys. C 05:04 (1994), 723–734.
25. Zel'dovich, Y.B., Raizer, Y.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover ed., 2002, Dover Publications, New York.
26. Budd, C.J., Leimkuhler, B., Piggott, M.D., Scaling invariance and adaptivity. Appl. Numer. Math. 39:3–4 (2001), 261–288.
27. Barbeiro, S., Ferreira, J.A., Grigorieff, R.D., Supraconvergence of a finite difference scheme for solutions in Hs(0,L). IMA J. Numer. Anal. 25:4 (2005), 797–811.
28. Ferreira, J.A., Grigorieff, R.D., On the supraconvergence of elliptic finite difference schemes. Appl. Numer. Math. 28:2–4 (1998), 275–292.
29. Degtyarev, L.M., Drozdov, V.V., Ivanova, T.S., The method of adaptive grids for the solution of singularly perturbed one dimensional boundary value problems. Differ. Uravn. 23:7 (1987), 1160–1169.
30. Strang, G., Iserles, A., Barriers to stability. SIAM J. Numer. Anal. 20:6 (1983), 1251–1257.
31. Nikitin, A.G., On the principal eigenfunction of a singularly perturbed Sturm–Liouville problem. Zh. Vychisl. Mat. Mat. Fiz. 39:4 (1999), 588–591.
32. Godunov, S.K., Ryabenkii, V.S., Difference Schemes, 1987, North-Holland, Amsterdam.
33. Lax, P.D., Richtmyer, R.D., Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9:2 (1956), 267–293.
34. G.S. Khakimzyanov, D. Dutykh, D. E. Mitsotakis, N.Y. Shokina, Numerical solution of conservation laws on moving grids, J. Comput. Appl. Math. (2016) 1–28 (submitted for publication).
35. Fedorenko, R.P., Introduction to Computational Physics, 1994, MIPT Press, Moscow.
36. García-Archilla, B., Sanz-Serna, J.M., A finite difference formula for the discretization of d3dx3 on nonuniform grids. Math. Comp. 57:195 (1991), 239–257.
37. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Kramer, P.B., Numerical Recipes: The Art of Scientific Computing, third ed., 2007, Cambridge University Press, Cambridge.
|