Инд. авторы: Vshivkova L., Dudnikova G.
Заглавие: Hybrid model of particle acceleration on a shock wave front
Библ. ссылка: Vshivkova L., Dudnikova G. Hybrid model of particle acceleration on a shock wave front // Lecture Notes in Computer Science. - 2017. - Vol.10187 LNCS. - P.737-743. - ISSN 0302-9743. - EISSN 1611-3349.
Внешние системы: DOI: 10.1007/978-3-319-57099-0_85; РИНЦ: 31043351; SCOPUS: 2-s2.0-85018445890; WoS: 000425525000085;
Реферат: eng: A new 2D hybrid numerical plasma model to investigate the processes of particle acceleration on a shock wave front is presented. This problem has a fundamental interest for astrophysics, plasma physics and charged particle accelerators. The model is based on the hybrid (or combined) approach where an electron component of plasma is described by the MHD-equations, while ions are treated kinetically via the Vlasov equation. One of the advantages of this approach is that it allows reduce the requirements for computing resources essentially comparing to a fully kinetic model. Another important advantage of it is the possibility to study the important instabilities on the ion time scale, neglecting highfrequency modes associated with electrons. © Springer International Publishing AG 2017.
Ключевые слова: Magnetohydrodynamics (MHD); Model; Particle-in-cell (PIC) method; Vlasov kinetic equation; Astrophysics; Charged particles; Integral equations; Kinetic theory; Magnetohydrodynamics; Particle in cell method; Particle acceleration; Kinetic modeling; Kinetic equations; Hybrid; High-frequency mode; Electron component; Computing resource; Wavefronts; Vlasov equation; Shock waves; Particle accelerators; Numerical analysis; Models; Magnetoplasma; Kinetics; Hybrid;
Издано: 2017
Физ. характеристика: с.737-743
Конференция: Название: 6th International Conference on Numerical Analysis and Its Applications
Аббревиатура: NAA'2016
Город: Lozenetz
Страна: Bulgaria
Даты проведения: 2016-06-15 - 2016-06-22
Ссылка: http://parallel.bas.bg/dpa/NAA16/
Цитирование: 1. Bykov, A.M., Brandenburg, A., Malkov, M.A., Osipov, S.M.: Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9988-3 2. Krymsky, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Doklady Akademii Nauk SSSR 234, 1306–1308 (1977). (in Russian) 3. Bell, A.R.: The acceleration of cosmic rays in shock fronts - I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978) 4. Malkov, M.A., Drury, L.O.: Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001) 5. Riquelme, M.A., Spitkovsky, A.: Magnetic amplification by magnetized cosmic rays in supernova remnant shocks. Astrophys. J. 717, 1054–1066 (2010) 6. Bell, A.R., Lucek, S.G.: Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001) 7. Zirakashvili, V.N., Ptuskin, V.S.: Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008) 8. Bykov, A.M., Osipov, S.M., Ellison, D.C.: Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011) 9. Berezin, Y.A., Dudnikova, G.I.: Numerical Plasma Models and Reconnection Processes. Nauka, Moskva (1985). (in Russian) 10. Lipatov, A.S.: The Hybrid Multiscale Simulation Technology. An Introduction with Application to Astrophysical and Laboratory Plasmas. Springer, Heidelberg (2002) 11. Damiano, P.A., Sydora, R.D., Samson, J.C.: Hybrid magnetohydrodynamic-kinetic model of standing shear Alfven waves. J. Plasm. Phys. 69(4), 277–304 (2003) 12. Caprioli, D., Spitkovsky, A.: Cosmic-ray-induced filamentation instability in collisionless shocks. J. Lett. Astrophys. 765, 8 (2013) 13. Vshivkova, L.V.: Numerical simulation of plasma using the hybrid MHD-kinetic model. Bull. Novosibirsk Comput. Center, Ser.: Numer. Anal. 14, 95–114 (2009) 14. Vshivkova, L.V., Dudnikova, G.I.: Numerical modeling of plasma phenomena using the PIC-method. In: 2012 25th International Symposium on IEEE Conference Electrical Insulation in Vacuum (ISDEIV), pp. 398–400 (2012) 15. Vshivkova, L.V., Dudnikova, G.I.: Dispersion analysis of the hybrid plasma model. Bull. Novosibirsk Comput. Center, Ser.: Numer. Anal. 16, 101–106 (2013) 16. Gargate, L., Bingham, R., Fonseca, R.A., Silva, L.O.: dHybrid: a massively parallel code for hybrid simulations of space plasmas. Comput. Phys. Commun. 176, 419–425 (2007) 17. Berezin, Y.A., Vshivkov, V.A.: Pirticle-in-Cell Method in the Dynamics of Lowdensity Plasma. Science, Siberian Branch, Novosibirsk (1980). (in Russian) 18. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988) 19. Grigoryev, Y.N., Vshivkov, V.A., Fedoruk, M.P.: Numerical Particle-In-Cell Methods. Theory and Applications, pp. 1–260. de Gruyter, Berlin (2002) 20. Braginski, S.I.: Protsessy perenosa v plasme. Voprosy Teorii Plazmy Gosatomizdat, Moskva 1, 183–272 (1963). (in Russian); transl. ‘Transport processes in plasma’. Reviews of Plasma Physics, 1, 205–311 (1965) 21. Vshivkova, L.V.: Numerical modeling of the multi-component plasma dynamics. Bull. Novosibirsk State Univ. 3(2), 3–20 (2003). (in Russian) 22. Vshivkova, L.V., Dudnikova, G.I., Liseykina, T.V., Mesyats, E.A.: Hybrid simulation of collisionless shock waves using the PIC-method. Bull. Novosibirsk Comput. Center, Numer. Anal. 17, 79–88 (2015) 23. Sagdeev, R.Z.: Cooperative phenomena and shock waves in collisionless plasma. Rev. Plasma Phys. 4, 23–91 (1966)